

Motor-driven and process metering pumps for all capacity ranges

Issued by:

ProMinent GmbH Im Schuhmachergewann 5-11 69123 Heidelberg Germany Phone +49 6221 842–0 info@prominent.com www.prominent.com

Technical changes reserved.

All previous catalogues and price lists are superseded with the release of this product catalogue. You can view our general terms and conditions on our homepage.

Heidelberg, January 2016

Product Catalogue Volume 3

Motor Driven and Process Metering Pumps

Performance by design

Industrial applications using fluid metering technology are many and varied. They are often critical and each industry has its own specific requirements. You will find the right product here, regardless of whether you require a reliable metering pump for a routine or more complex application.

Chapter 1 offers virtually all-purpose motor-driven diaphragm metering pumps for use in the low-pressure range up to a capacity of 1,000 l/h, to ensure that your processes operate safely to meet maximum requirements. Advanced technology for demanding applications.

Chapter 2 focuses on heavy-duty pumps for extreme applications. Process metering pumps for hazardous production processes in the petrochemical industry or in the oil and gas industry, tailored specifically for high-end applications. They have proved themselves able to meter, even under very high pressure and at extreme temperatures - even toxic, corrosive and flammable liquids.

We're there for you!

The selection of a product depends on a number of different factors.

Our team will be happy to be of assistance should you have any questions about our metering technology. Give us a call! We look forward to hearing from you.

Monday to Friday 8:00 - 16:30

ProMinent Sales

+49 6221 842-0 info@prominent.com

Technical Consulting

+49 6221 842-0 service@prominent.com

Pump Guide

You can also find information online. Try out the ProMinent Selection Guide on our website. Just enter the required pump capacity and back pressure – and the Pump Guide will present you with a list of suitable metering pumps. It's the quickest and easiest way to track down the right pump for your needs.

www.pump-guide.com

Note:

We can also support you by phone in selecting the right products and, in many cases, optimising entire applications. For more complex requirements, our consultants will hand the task over to a field sales colleague, who will then clarify your requirements in person on site.

After-sales Service

Our service technicians are on hand to help you. Regardless of whether you need assistance with initial installation or with maintenance and repair – we'd be happy to help!

+49 6221 842-0 service@prominent.com

Note: Local to you around the world.Find contact details for our branch offices around the globe at: www.prominent.com/en/locations

New Products: Motor driven and Process Pumps

Automatic Overload Shut-down as Pump Protection Function

The distinguishing feature of the new Sigma product range is its automatic overload shut-down. With the Control version of the Sigma range, the motion and speed profiles are also recorded and evaluated in conjunction with the energy requirement. This data enables the energy supply to be limited to the amount of energy actually needed, thereby improving efficiency. In addition, an analysis of the energy requirement leads to automatic monitoring of the metering pump. This facilitates the internal overload shut-down of the pump, offering additional protection for the motor-driven metering pump.

For more information see page \rightarrow 1-26

Hydraulic Diaphragm Metering Pumps Orlita® Evolution 1-4

The EF3a marks the launch of the Orlita® Evolution family, which will be showcased at ACHEMA 2015. The 4 product ranges EF1a to EF4a of the new family of process pumps to comply with API 675 provide a capacity ranging from 4 to 7,426 l/h at 400 to 10 bar.

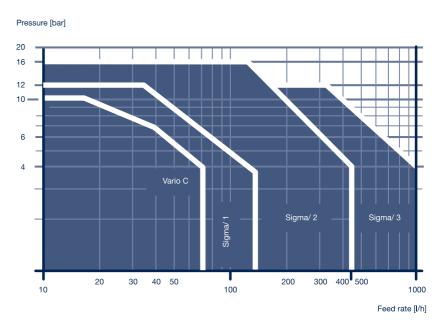
For more information see page \rightarrow 2-44

Contents

Mot	or-drive	en and p	process pumps for all capacity ranges	page
1	Moto	r Driver	n Metering Pumps	1-1
	1.0		w of Motor Driven Metering Pumps	1-1
		1.0.1	Selection Guide	1-1
		1.0.2	Installation Options	1-2
	1.1	Motor D	riven Metering Pump Vario C	1-0
		1.1.1	Motor Driven Metering Pump Vario C	1-0
		1.1.2	Identity Code Ordering System for VAMc	1-4
	4.0	1.1.3	Spare Parts	1-6
	1.2		Priven Metering Pump Sigma/ 1 (Basic Type)	1-7
		1.2.1 1.2.2	Motor Driven Metering Pump Sigma/ 1 (Basic Type) Spare Parts	1-8 1-14
	1.3		riven Metering Pump Sigma/ 1 (Control Type)	1-17
	1.0	1.3.1	Motor Driven Metering Pump Sigma/ 1 (Control Type)	1-17
		1.3.2	Spare Parts	1-2
	1.4		riven Metering Pump Sigma/ 2 (Basic Type)	1-24
		1.4.1	Motor Driven Metering Pump Sigma/ 2 (Basic Type)	1-24
		1.4.2	Spare Parts	1-29
	1.5	Motor D	riven Metering Pump Sigma/ 2 (Control Type)	1-3
		1.5.1	Motor Driven Metering Pump Sigma/ 2 (Control Type)	1-3
		1.5.2	Spare Parts	1-36
	1.6		riven Metering Pump Sigma/ 3 (Basic Type)	1-39
		1.6.1	Motor Driven Metering Pump Sigma/ 3 (Basic Type)	1-39
		1.6.2	Spare Parts	1-4
	1.7		riven Metering Pump Sigma/ 3 (Control Type)	1-40
		1.7.1 1.7.2	Motor Driven Metering Pump Sigma/ 3 (Control Type)	1-40
	1.8		Spare Parts ic/Mechanical Accessories	1-50 1-50
	1.0	1.8.1	Foot Valves for Motor Driven Metering Pumps	1-50
		1.8.2	Injection Valves for Motor Driven Metering Pumps	1-50
		1.8.3	Back Pressure Valves / Relief Valves for Motor Driven	1-50
		1.0.0	Metering Pumps	1-59
		1.8.4	Suction Lances, Suction Assemblies and Level Switches for Motor Driven Metering Pumps	1-60
		1.8.5	Fittings	1-6
		1.8.6	Pulsation Damper	1-68
		1.8.7	Accumulators	1-7
		1.8.8	Accumulators Without Diaphragm	1-72
		1.8.9	Connectors and Seals for Motor Driven Metering Pumps	1-7
		1.8.10	Metering Pump Wall Mounting Bracket	1-8
			Hoses, Pipes	1-82
	4.0	1.8.12	9 1	1-8
	1.9		al Accessories	1-87
		1.9.1 1.9.2	Speed Controllers General Electrical Accessories	1-87 1-89
	1.10		Accessories	1-94
	1.10	1.10.1		1-94
	1.11		tion Examples	1-98
		1.11.1	Metering of Highly Viscous Substances	1-98
		1.11.2	Mixing Two Reagents	1-99
		1.11.3	Safe and Reliable Chemical Metering with Reduced Pulsation	1-10
2	Proc	ace Mat	ering Pumps	2-1
_	2.0		w of Process Metering Pumps	2-
	۷.0	2.0.1	Selection Guide	2- 2-
		2.0.1	Installation Applications	2-2
	2.1		gm Metering Pump ProMinent EXtronic®	2-3
		2.1.1	Diaphragm Metering Pump ProMinent EXtronic®	2-0
		2.1.2	Identity Code Ordering System for EXBb	2-
		2.1.3	Spare Parts	2-0
		2.1.4	Ex-Proof Ancillary Equipment	2-8

Contents

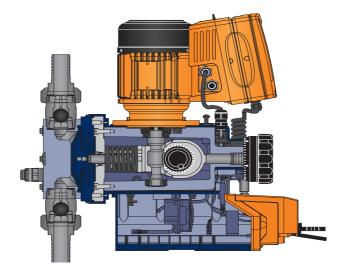
lotoı	r-drive	and process	pumps for all capacity ranges	page
	2.2	Diaphragm Meter	ring Pump Makro TZ	2-10
			gm Metering Pump Makro TZ	2-10
			Code Ordering System for TZMb	2-12
		2.2.3 Spare Pa		2-13
	2.3		ring Pump Makro/ 5	2-16
			gm Metering Pump Makro/ 5	2-16
			Code Ordering System M5Ma	2-18
		2.3.3 Spare Pa		2-19
	2.4	•	agm Metering Pump Hydro/ 2	2-2
			c Diaphragm Metering Pump Hydro/ 2	2-2
		•	Code Ordering System HP2a	2-24
		2.4.3 Spare Pa	- ·	2-26
	2.5		agm Metering Pump Hydro/ 3	2-29
			c Diaphragm Metering Pump Hydro/ 3	2-29
			Code Ordering System HP3a	2-32
		2.5.3 Spare Page 1	· · · · · · · · · · · · · · · · · · ·	2-33
	2.6	•	agm Metering Pump Hydro/ 4	2-35
			c Diaphragm Metering Pump Hydro/ 4	2-35
			Code Ordering System HP4a	2-38
		2.6.3 Spare Page 1		2-39
	2.7		agm Metering Pump Makro/ 5	2-41
	,		c Diaphragm Metering Pump Makro/ 5	2-41
			Code Ordering System for M5Ha	2-44
		2.7.3 Spare Page 1	· · · · · · · · · · · · · · · · · · ·	2-46
	2.8		agm Metering Pump Orlita® Evolution 1	2-47
	2.0		c Diaphragm Metering Pump Orlita® Evolution 1	2-47
	2.9		agm Metering Pump Orlita® Evolution 2	2-49
	2.0		c Diaphragm Metering Pump Orlita® Evolution 2	2-49
	2.10		agm Metering Pump Orlita® Evolution 3	2-52
	2.10		c Diaphragm Metering Pump Orlita® Evolution 3	2-52
	2.11		agm Metering Pump Orlita® Evolution 4	2-55
			c Diaphragm Metering Pump Orlita® Evolution 4	2-55
	2.12		agm Metering Pumps Orlita® MF	2-57
			c Diaphragm Metering Pump Orlita® MF	2-57
			IFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps	2-6
			IFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps	2-65
			IFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps	2-69
			IFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps	
			IFS 600 (MF5b) Hydraulic Diaphragm Metering Pumps	
			IFS 1400 (MF6a) Hydraulic Diaphragm Metering Pump	
	2.13		agm Metering Pump Orlita® MH	2-84
	2.10		c Diaphragm Metering Pumps Orlita® MH with	2-0-
			aphragm	2-84
	2.14		iaphragm Metering Pump High-pressure Orlita® MHHF	
			c Metal Diaphragm Metering Pump High-pressure	
		Orlita® N	MHHP	2-87
	2.15		Pump Sigma/ 2 (Basic Type)	2-88
		2.15.1 Plunger	Metering Pump Sigma/ 2 (Basic Type)	2-88
		2.15.2 Identity (Code Ordering System for SBKa	2-91
		2.15.3 Spare Pa	<u> </u>	2-92
	2.16	•	Pump Sigma/ 2 (Control Type)	2-93
			Metering Pump Sigma/ 2 (Control Type)	2-93
			Code Ordering System for SCKa	2-95
		2.16.3 Spare Page 1		2-95
	2.17	Plunger Metering		2-97
	,		Metering Pump Meta	2-97
			Code Ordering System for MTKa	2-100
		2.17.2 Identity (• .	2-10
				•


Contents

Motor-driven and process pumps for all capacity r	anges page
2.18 Plunger Metering Pump Makro TZ	2-102
2.18.1 Plunger Metering Pump Makro TZ	2-102
2.18.2 Identity Code Ordering System TZKa	2-105
2.18.3 Spare Parts Kits	2-106
2.19 Plunger Metering Pump Makro/ 5	2-107
2.19.1 Plunger Metering Pump Makro/ 5	2-107
2.19.2 Identity Code Ordering System for M5Ka	2-110
2.19.3 Spare Parts Kits	2-112
2.20 Plunger Metering Pump Orlita® PS	2-113
2.20.1 Plunger Metering Pump Orlita® PS	2-113
2.21 Plunger Metering Pump Orlita® DR	2-116
2.21.1 Plunger Metering Pump Orlita® DR	2-116
2.22 Diaphragm Process Pump Zentriplex	2-118
2.22.1 Diaphragm Process Pump Zentriplex	2-118
2.23 Diaphragm Process Pump TriPower®	2-120
2.23.1 Diaphragm Process Pump TriPower®	2-121
2.24 Hydraulic/Mechanical Accessories	2-123
2.24.1 Return/Pressure Relief Valve, Spring-load	ded 2-123
2.24.2 Safety Valve	2-124
2.24.3 Pulsation Damper	2-125
3 Data Required for Specification of Metering	Pump and
Accessories	3-1
4 ProMinent® Chemical Resistance List	4-1

1.0 Overview of Motor Driven Metering Pumps

1.0.1 Selection Guide



pk_2_diagramm

ProMinent offers an extensive range of metering pumps with a capacity rating of up to 1,000 l/h. All oscillating positive-displacement pumps feature a leak-free, hermetically sealed metering chamber and an identical operating structure.

Applications

- General: Chemical metering up to 1,000 l/h
- Potable water treatment: Metering of disinfectants
- Cooling circuits: Metering of disinfectants
- Waste water treatment: Metering of flocculants
- Paper industry: Metering of additives
- Plastics production: Metering of additives
- Textile industry: Metering of dyeing additives
- Electroplating: Metering of acids/lyes
- Automotive industry: Metering of cleaning agents
- Food industry: Metering of solids, concentrates, CIP cleaning agents
- Pool & Wellness: Metering of disinfectants

Sigma-bCGHR

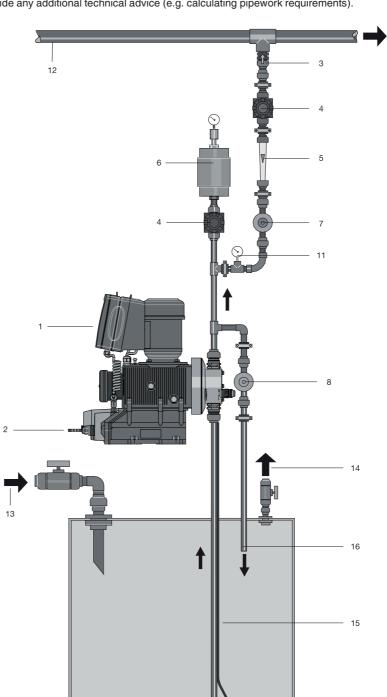
Sigma multi-layer safety diaphragm (1: Diaphragm rupture warning system)

1.0 Overview of Motor Driven Metering Pumps

1.0.2

Metering pump

Shut-off valve Flow meter/monitor Pulsation damper Back pressure valve Relief valve in the bypass line


10 Foot valve
11 Manometer
12 System
13 Filling
14 Bleed valve
15 Suction line
16 Bypass

Activation and control option Injection valve

Installation Options

The smooth operation of metering systems depends not only on choosing the correct model for your application, but also on the correct installation of application-specific accessories. The drawing below illustrates a variety of accessory components, not all of which will be required for every plant, but which give an overview of what can be achieved in practical terms.

We are always at your service, to help you choose the right accessories for your processing application, and to provide any additional technical advice (e.g. calculating pipework requirements).

pk_2_000_1_1AK

Motor Driven Metering Pump Vario C

pk_2_126

Vario C

Motor Driven Metering Pump Vario C

The basic pump for simple applications

Capacity range 8 - 76 l/h, 10 - 4 bar

The motor-driven metering pump Vario C delivers a high level of process quality for continuous metering within simple metering tasks. It can be used, for example, in the metering of additives or flocculants in chemical metering.

Your benefits

- Excellent suction capacity, gentle metering stroke and consistently precise metering
 - Excellent process quality: Metering reproducibility is better than ± 2% within the stroke length adjustment range of 30 to 100%
 - Flexible adjustment of the pump capacity by means of the stroke length in 1% increments
 - Fibreglass-reinforced plastic housing
 - Good adaptation to the specific application, thanks to 4 different gear reduction ratios and 2 sizes of liquid ends in 4 material designs
 - Power end optionally available with three-phase or single-phase AC motor
 - Customised designs are available on request

Technical details

- Stroke length: 3 mm
- Stroke length adjustment range: 30 100%
- Stroke length adjustment: manually by means of self-locking rotary dial
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PP, PVC, PVDF, stainless steel 1.4571/1.4404
- PTFE diaphragm
- Motor: Three-phase AC motor (0.07 KW, 230/400 V, 50/60 Hz) or single-phase AC motor (0.06 kW, 230 V 50 Hz or 115 V 60 Hz)
- Degree of protection: IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all motor-driven metering pumps during installation for safety reasons.

Field of application

- Chemical metering in potable water, cooling and waste water circuits
- Metering of additives, flocculants etc.

1.1 Motor Driven Metering Pump Vario C

Technical Data

Type VAMc	With 1500 rpm motor at 50 Hz Delivery rate at max. Max. back pressure stroke rate				With 1800 rpm motor at 60 Hz Delivery rate at max. Max.		Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	
	bar	I/h	pressure ml/	stroke rate Strokes/min	psi	oack pressure I/h/qph (US)	stroke rate Strokes/min	mWC	bar	G-DN
		-	stroke			31 (11)				
10008	10	8	4	38	145	9.6/2.5	45	7	2.8	3/4–10
10016	10	16	4	77	145	19.2/5.0	92	7	2.8	3/4–10
07026	7	26	4	120	100	31.2/8.2	144	7	2.8	3/4–10
07042	7	42	4	192	100	50.4/13.3	230	7	2.8	3/4–10
07012	7	12	5	38	100	14.4/3.8	45	6	1.7	3/4-10
07024	7	24	5	77	100	28.8/7.6	92	6	1.7	3/4–10
04039	4	40	5	120	58	48.0/12.6	144	6	1.7	3/4-10
04063	4	64	5	192	58	76.8/20.2	230	6	1.7	3/4–10

The shipping weight of all pump types is 6/7.2 kg (PVDF/SS)

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seat
PPE	PP	PP	EPDM	Ceramic	PP
PCB	PVC	PVC	FKM	Ceramic	PVC
PVT	PVDF	PVDF	PTFE	Ceramic	PTFE
SST	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4581	PTFE	Stainless steel mat. no. 1.4404	PTFE

Motor Data

Identity code characteristic		Voltage supply		Remarks	
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.07 kW	
		250-280 V/440-480 V	60 Hz	0.07 kW	
М	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.06 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.06 kW	

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

1.1 Motor Driven Metering Pump Vario C

1.1.2

Identity Code Ordering System for VAMc

Vario Diaphragm Metering Pump

VAMc	Type*							
		bar	l/h					
	10008	10	8					
	10016	10	16					
	07026	7	26					
	07042	7	42					
	07012	7	12					
	07024		24					
	04039		40					
	04063		64					
			al Liqui	id and				
				al EPDM				
		PCB		eal FKM				
		PVT						
				PTFE seal				
		SST		ss steel, PT				
				end versi		h RVO		
			0		pring (standa			
			1		e springs. H			
					connection			
					andard conne			
				1	/C union nut			
					ounion nut a			
				_	/DF union nu			
						union nut and insert		
				5 PF	union nut a	nd hose nozzle		
				6 P\	/C union nut	and hose nozzle		
				7 P\	/DF union nu	it and hose nozzle		
				8 St	ainless steel	union nut and hose nozzle		
				Ve	ersion			
				0		oMinent® logo (standard)		
				1		t ProMinent [®] logo		
			M modified					
			Electrical power supply					
			S 3 ph, 230 V / 400 V; 50/60 Hz					
					M	1 ph AC 230 V; AC 50/60 Hz		
					N	1 ph AC 115 V; AC 60 Hz		
						Stroke sensor 0 no stroke sensor		
						1		
						3 with stroke sensor (Namur)		
						Stroke length adjustment		
						0 manual (standard)		

^{*} Digits 1 and 2=back pressure [bar]; digits 3, 4, 5=flow rate [l/h]

1.1 Motor Driven Metering Pump Vario C

1.1.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PPE, PCB, PVT material versions:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 complete sealing set (O-rings or cover rings with PVT design)

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 1 complete sealing set (cover rings, flat seals, ball seat)

Spare Parts Kit for Vario

Applicable to Identity code: Type VAMc 10008, 10016, 07026, 07042

Liquid end	Materials in contact with the medium	Order no.
FM 042 - DN 10	PPE	910753
FM 042 - DN 10	PCB	910754
FM 042 - DN 10	PVT	1003641
FM 042 - DN 10	SST	910751

Applicable to Identity code: Type VAMc 07012, 07024, 04039, 04063

Liquid end	Materials in contact with the medium	Order no.
FM 063 - DN 10	PPE	910758
FM 063 - DN 10	PCB	910759
FM 063 - DN 10	PVT	1003642
FM 063 - DN 10	SST	910756

Pump Diaphragms

	Order no.
Vario with FM 042 Type VAMc 10008, 10016, 07026, 07042	811458
Vario with FM 063 Type VAMc 07012, 07024, 04039, 04063	811459

Accessories

- Foot Valves see page → 1-47
- Injection Valves see page → 1-49
- \blacksquare Connectors and Seals see page \rightarrow 1-66
- Suction Lances, Suction Assemblies and Level Switches see page → 1-55
- Speed Controllers see page → 1-78

Spare Parts

■ Custom Accessories See page → 1-85

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic Type)

1.2.1

Motor Driven Metering Pump Sigma/ 1 (Basic Type)

The robust pump for safe and reliable use

Capacity range 17 - 144 l/h, 12 - 4 bar

1

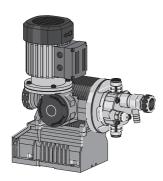
The Sigma/ 1 Basic is an extremely robust motor-driven metering pump with patented multi-layer safety diaphragm for excellent process safety. It offers a wide range of power end designs, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The Sigma/ 1 diaphragm metering pump together with pumps of type Sigma/ 2 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

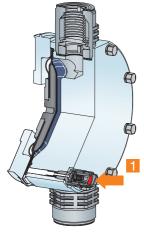
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

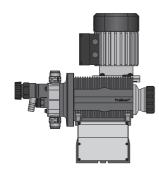
Flexible adaptation to the process:


- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Adaptation to specific installation situations, as the "Liquid end on left" is available as standard
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details


- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30-100% stroke length adjustment range under certain defined conditions and after proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

Field of application


- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0128_SW Sigma/ 1 Basic version

P_SI_0065_C1 1: Diaphragm rupture sensor

P_SI_0152_SW Sigma / 1 liquid end on left

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic Type)

pk_2_103

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions (S1Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.18 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

Upon request externally controllable via PROFIBUS® DP

Speed controllers with frequency converter (identity code specification Z)

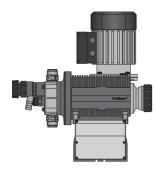
The speed controller assembly consists of a frequency converter and a variable speed motor of 0.09 kW

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510


Available for material version PVT and SST.

Identity code example: S1BaH04084PVTS00 F S000

Sigma / 1 Basic Type Version "Liquid End on Left Side"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1BaH07042PVTS00 5 S000

P_SI_0152_SW Sigma / 1 liquid end on left

Motor Driven Metering Pumps

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic Type)

Technical Data

Type S1Ba	With	1500	rpm moto	or at 50 Hz	With	n 1800 rpm mot	tor at 60 Hz	Suction lift	Perm. pre- pressure	Connection, suction/	Shipping weight
			ery rate at max.	Max. stroke		Delivery rate at max.	Max. stroke		suction side	discharge side	
	I		ressure	rate		ack pressure	rate				
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg
12017 PVT	10	17	3.8	73	174	20.4/5.3	88	7	1	3/4-10	9
12017 SST	12	17	3.8	73	174	20.4/5.3	88	7	1	3/4–10	12
12035 PVT	10	35	4.0	143	174	42.0/11.0	172	7	1	3/4-10	9
12035 SST	12	35	4.0	143	174	42.0/11.0	172	7	1	3/4–10	12
10050 PVT	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4-10	9
10050 SST	10	50	4.0	205	145	60.0/15.8	246	7	1	3/4-10	12
10022 PVT	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	9
10022 SST	10	22	5.0	73	145	26.4/6.9	88	6	1	3/4-10	12
10044 PVT	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	9
10044 SST	10	44	5.1	143	145	52.8/13.9	172	6	1	3/4-10	12
07065 PVT	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4-10	9
07065 SST	7	65	5.2	205	102	78.0/20.6	246	6	1	3/4–10	12
07042 PVT	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	10
07042 SST	7	42	9.5	73	102	50.4/13.3	88	3	1	1–15	14
04084 PVT	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	10
04084 SST	4	84	9.7	143	58	100.8/26.6	172	3	1	1–15	14
04120 PVT	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	10
04120 SST	4	120	9.7	205	58	144.0/38.0	246	3	1	1–15	14

Performance data for TTT, see type PVT

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT*	PTFE + 25% carbon	PVDF	PTFE/PTFE	Ceramic	-

^{*} specifically for areas at risk from explosion The ball seat is made of PVDF on the design "F"

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.09 kW 0.09 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.09 kW 0.09 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.09 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.18 kW	Variable speed motor with integrated frequency converter control range 1:20
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.12 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.12 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.12 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.12 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18 kW	With PTC, speed adjustment range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic Type)

Sigma/ 1 Basic Type (S1Ba)

Pump type	Drive typ												
Sear Union				aphragn	n								
12017 12 17	Pi	ump		1/le			he:	I/Ie					
12035 12 35	10	2017				07065							
10000 10 50 0.4084 4 84													
10042 10 22													
Material of liquid end PV PVDF (max. 10 bar)													
Neterial of liquid end						00	•	0					
PVF (max. 10 bar) Sistainless sete of PTFE + 25% carbon (max. 10 bar) Seal material T PTFE seal Diaphragm S Multi-layer safety diaphragm with optical rupture indicator A Multi-layer safety diaphragm with rupture signalling (contact) Liquid end version 0 No spring 1 With 2 valve springs, Hastelloy C, 0.1 bar 4** With pressure relief valve, FKM seal with valve springs, only with PV and SS 6** With pressure relief valve, FFM seal with valve springs, only with PV and SS Hydraulic connection 0 Standard 1 Winn nut and PV brisert 0 Standard 1 Union nut and PV brisert 0 Standard 1 Union nut and PV brisert 0 Standard 1 Union nut and SS** insert 0 With pressure relief valve, EFM seal with valve springs, only with PV and SS Hydraulic connection 0 Standard 0 Standard 1 Union nut and SS** insert 0 With pressure relief valve, EFM seal With stroke on the pressure relief valve, EFM seal With stroke on the pressure relief valve, EFM seal With stroke on the pressure relief valve, EFM seal With stroke on the pressure relief valve, EFM seal With stroke on the pressure relief valve, EFM seal With stroke on the pressure relief valve, EFM					uid en	d							
TT PTEE 25% carbon (max. 10 bar) Seal material T PTEE seal Diaphragm S Multi-layer safety diaphragm with optical rupture indicator A Multi-layer safety diaphragm with rupture signalling (contact) Liquid end version 0 No spring 1 With 2 valve springs, Hastelloy C, 0.1 bar 4"** With pressure relief valve, FKM seal, no valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve springs, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, valve spring, only with PV and SS With pressure relief valve, EPDM seal, valve spring, only with PV and SS With pressure relief valve, EPDM seal, valve spring, only with PV and SS With pressure relief valve, EPDM seal, valve spring, onl													
Seal material			SS	Stainle	ss steel	ĺ							
Diphyragm S Multi-layer safety diaphragm with optical rupture indicator Multi-layer safety diaphragm with rupture signalling (contact) Liquid end version 0 No spring 1 With 2 valve springs, Hastelloy C, 0.1 bar 4 With pressure relief valve, FKM seal, no valve spring, only with PV and SS 6 With pressure relief valve. FFM seal with valve springs, only with PV and SS 6 With pressure relief valve. FFM seal with valve spring, only with PV and SS With pressure relief valve. FFM seal with valve spring, only with PV and SS With pressure relief valve. FFM seal with valve spring, only with PV and SS With pressure relief valve. FFM seal with valve spring, only with PV and SS Hydraulic connection 0 Standard 1 Union nut and PV insert 2 Union nut and PV insert 3 Union nut and PV insert 4 Union nut and SS** insert 7 Union nut and SS hose nozzle Union nut and stainless steel hose nozzle 9 Union nut and stainless steel hose nozzle Without ProMinent** logo (standard) With proMinent** logo (standard) Voribout ProMinent** logo (standard) Vori			TT	PTFE -	+ 25% c	arbon (max. 1	0 bar)					
Diaphragm				Seal n	-								
Multi-layer safely diaphragm with optical rupture indicator Multi-layer safely diaphragm with rupture signalling (contact) Liquid end version No spring With 2 valve springs, Hastelloy C, 0.1 bar With pressure relief valve, FKM seal, no valve spring, only with PV and SS With pressure relief valve, EPM seal, without valve spring, only with PV and SS With pressure relief valve, EPM seal, without valve spring, only with PV and SS With pressure relief valve, EPM seal, without valve spring, only with PV and SS With pressure relief valve, EPM seal, without valve spring, only with PV and SS Hydraulic connection Standard Union nut and PVC insert Union nut and PVC insert Union nut and PVDF insert Union nut and SS hose nozzle Union nut and SS hose nozzle Union nut and Ss hose nozzle Without ProMinent® logo Mith ProMinent® logo (standard) Without ProMinent® logo (standard) Without ProMinent® logo (standard) Electrical power supply S ph. 230 V/400 V 50/60 Hz, vith PTC R Variable speed motor with integrated frequency converter 1 pH, 230 V 50/60 Hz Z Speed control compl 1 ph 230 V, 50/60 Hz, vith external fan 1 ph 230 V 50/60 Hz Z Speed control compl 1 ph 230 V, 50/60 Hz, vith external fan 1 ph 230 V 50/60 Hz N 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 1 ph, AC, 230 V/500 DHz, 20,98 W X 2 Extended to version ATEX-T3 Extended to version ATEX-T3 Extended to version ATEX-T4 Stroke sensor Unith stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 115 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz				Т									
A Multi-layer safety diaphragm with rupture signalling (contact) Liquid and version No spring With 2 valve springs, Hastelloy C, 0.1 bar With pressure relief valve. FKM seal with valve spring, only with PV and SS With pressure relief valve. EPDM seal, without valve spring, only with PV and SS With pressure relief valve. EPDM seal, without valve spring, only with PV and SS With pressure relief valve. EPDM seal, with valve spring, only with PV and SS Hydraulic connection O Standard I Union nut and PVD insert 2 Union nut and PVD insert 4 Union nut and SS mose nozzle Union nut and SS hose nozzle Union nut and SP hose n								:					
Liquid end version 0 No springs Hastelloy C, 0.1 bar 4** With pressure relief valve, FKM seal, no valve spring, only with PV and SS 5** With pressure relief valve, FKM seal, with valve springs, only with PV and SS 6** With pressure relief valve, FFM seal, with valve spring, only with PV and SS 7** With pressure relief valve, FFM seal, with valve spring, only with PV and SS 7** With pressure relief valve, FFM seal, with valve spring, only with PV and SS 7** With pressure relief valve, FFM seal, with valve spring, only with PV and SS 7** With pressure relief valve, FFM seal, with valve spring, only with PV and SS 7** With PV and S							•						
No spring With zwave springs, Hastelloy C, 0.1 bar With zwave springs, only with PV and SS S** With pressure relief valve, FKM seal with valve spring, only with PV and SS With pressure relief valve, EPDM seal, without valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with pvole spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with PV and SS With stroke control motor 420 m x spring, only with pvole spring, only wi					A				priragini	with rup	iture sig	iailing (cont	act)
With 2 valve springs, Hastelloy C, 0.1 bar													
### With pressure relief valve, FKM seal, no valve spring, only with PV and SS With pressure relief valve, EPDM seal, without valve spring, only with PV and SS With pressure relief valve, EPDM seal, without valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With pressure relief valve, EPDM seal, with valve spring, only with PV and SS ### With ProMinent* ### Union unt and PVC insert ### Union unt and PVC insert ### Union unt and PVDF insert ### Union unt and PVD									springs	Hastello	v C 0 1	bar	
## With pressure relief valve, EPDM seal, with valve spring, only with PV and SS With pressure relief valve, EPDM seal, with valve spring, only with PV and SS Hydraulic connection Standard													ring, only with PV and SS
With pressure relief valve, EPDM seal, without valve spring, only with PV and SS Hydraulic connection Standard Union nut and PVC insert Union nut and PVDF hose nozzle Union nut and stainless steel hose nozzle Union nut and stainless steel hose nozzle Version Without ProMinent® logo (standard) Without ProMinent® logo (standard) Without ProMinent® logo (standard) Electrical power supply S 3 ph, 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/6 V (0) Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/6 V (0) Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz (variable speed motor + FC) N 1 ph, AC, 230 V/50/60 Hz, 0.09 kW N 1 ph						5**							
Hydraulic connection O Slandard 1 Union nut and PVC insert 2 Union nut and PVD insert 3 Union nut and PVD insert 4 Union nut and PVD insert 4 Union nut and SS** insert 7 Union nut and PVD hose nozzle 8 Union nut and SD hose nozzle 9 Union nut and SS hose nozzle 9 Union nut and SS hose nozzle Version O With ProMinent* logo (standard) 1 Without ProMinent* logo (standard) 2 Sph. 230 V400 V 50/60 Hz, 0.09 kW 3 ph. 230 V400 V 50/60 Hz, 0.09 kW 1 ph. AC, 230 V/50/60 Hz, 0.09 kW 1 ph. AC, 230 V/50/60 Hz, 0.09 kW 1 ph. AC, 230 V/50/60 Hz, 0.09 kW 2 Speed control compl 1 ph 230 V, 50/60 Hz (Exe, Excl) 3 ph. 230 V400 V, 50 Hz, (Exe, Excl) 2 sph. 230 V/400 V, 50 Hz, (Exe, Excl) 3 ph. 250 V/440 V, 60 Hz, (Exe, Excl) 2 ph. 265 V/440 V, 60 Hz, (Exe, Excl) 2 ph. 265 V/440 V, 60 Hz, (Exe, Excl) 3 ph. 265 V/440 V, 60 Hz, (Exe, Excl) 2 Pacing relay (reed relay) 1 Exemotor version ATEX-T3 2 Exd motor version ATEX-T3 2 Exd motor version ATEX-T4 Stroke sensor 1 No stroke sensor (Namur) for hazardous locations 1 Stroke sensor (Namur) for hazardous locations 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke control motor 0 20 mA 230 V/50/60 Hz 3 With stroke control motor 0 20 mA 230 V/50/60 Hz 4 With stroke control motor 0 20 mA 230 V/50/60 Hz With stroke control motor 0 20 mA 2115 V/60 Hz With stroke control motor 0 20 mA 115 V/60 Hz With stroke control motor 0 20 mA 115 V/60 Hz With stroke control motor 0 20 mA 115 V/60 Hz						6**							
1						7**	With p	ressure	e relief v	alve, EF	DM sea	, with valve	spring, only with PV and SS
1 Union nut and PVC insert 2 Union nut and PVDF insert 3 Union nut and PVDF insert 4 Union nut and PVDF hose nozzle 5 Union nut and PVDF hose nozzle 6 Union nut and SYS** insert 7 Union nut and SS hose nozzle 9 Union nut and SS hose nozzle 9 Union nut and SS hose nozzle 1 Version. 0 With ProMinent® logo (standard) 1 Without ProMinent® logo (standard) 1 Without ProMinent® logo (standard) 5 Eleft liquid end 1 Electrical power supply S 3 ph. 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph. 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph. 230/400 V, with PTC R Variable speed motor 3 ph. 230/400 V, with PTC R Variable speed motor with integrated frequency converter 1 ph. 230 V, 50/60 Hz 2 Speed control compl 1 ph. 230 V, 50/60 Hz (variable speed motor + FC) 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz N 1 ph. AC, 230 V/50/60 Hz N 2 ph. 230 V/50/60 Hz N 3 ph. 230 V/50/60 Hz N 4 ph. 230 V/50/60 Hz N							Hydra	ulic co	nnectio	on			
Linion nut and PP insert													
1								-					
Union nut and SS*** insert Union nut and SP bose nozzle Union nut and Shose nozzle Union nut and Shose nozzle Union nut and Shose nozzle Version O With ProMinent® logo (standard) 1 Without ProMinent® logo (standard) 1 Without ProMinent® logo M Modified F with physiological safety (FDA) in respect of wetted materials Left fliquid end Electrical power supply S 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph, 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz V (0) Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz S pseed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) I 1 ph, AC, 135 V 60 Hz, 0.09 kW I 1 ph, AC, 130 V/50/60 Hz, 0.09 kW I 3 ph, 265 V/440 V, 60 Hz, (Exe, Exd) P 3 ph, 265 V/440 V, 60 Hz, (Exe, Exd) I 1 ph, AC 115 V 60 Hz, 60 Hz, (Exe, Exd) I 1 ph, AC 115 V 60 Hz, 60 Hz, (Exe, Exd) I 1 ph, AC 115 V 60 Hz, 60 Hz, (Exe, Exd) I 1 Exe motor version ATEX-T3 Excladard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor (standard) P Pacing relay (reed relay) I With stroke positioning motor, 230 V/50/60 Hz With stroke positioning motor, 0.20 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz													
Union nut and PVDF hose nozzle Union nut and SS hose nozzle Union nut and stainless steel hose nozzle Version 0 With ProMinent® logo (standard) 1 Without ProMinent® logo (standard) 2 Left liquid end Electrical power supply S 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW 7 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW 7 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW 8 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW 9 V(iii) Variable speed motor 3 ph, 230/400 V, with PTC 1 Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz 1 ph, AC, 230 V/50/60 Hz, 0.09 kW 1 ph, AC, 115 V 60 Hz, 0.09 kW 1 ph, AC, 115 V 60 Hz, 0.09 kW 1 3 ph, 230 V/400 V, 50/60 Hz, (zariable speed motor + FC) 1 ph, AC, 250 V/50/60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 2 No motor, C 42 flange (NEMA) 3 No motor, C 42 flange (NEMA) 3 No motor, C 42 flange (NEMA) 4 No motor, C 42 flange (NEMA) 5 No motor, C 42 flange (NEMA) 6 No stroke sensor (standard) 7 Exe motor version ATEX-T3 8 Exd motor version ATEX-T4 8 Stroke sensor (Namur) for hazardous locations 8 Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 020 mA 230 V/50/60 Hz 4 With stroke control motor 020 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 230 V/50/60 Hz 6 With stroke control motor 020 mA 230 V/50/60 Hz 9 With stroke control motor 020 mA 230 V/50/60 Hz 1 With stroke control motor 020 mA 230 V/50/60 Hz 1 With stroke control motor 020 mA 230 V/50/60 Hz 1 With stroke control motor 020 mA 230 V/50/60 Hz 1 With stroke control motor 020 mA 230 V/50/60 Hz													
Union nut and SS hose nozzle Union nut and stainless steel hose nozzle Version 0 With ProMinent® logo (standard) 1 Without ProMinent® logo M Modified F with physiological safety (FDA) in respect of wetted materials Left fliquid end Electrical power supply S 3 ph. 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph. 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph. 230/400 V, with PTC R Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz Z Speed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) I 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 230 V/50/60 Hz, 0.09 kW N 1 ph. AC, 115 V 60 Hz, 0.09 kW L 3 ph. 230 V/400 V, 50 Hz, (Exe, Exd) P 3 ph. 256 V/440 V, 60 Hz, (Exe, Exd) P 4 With stroke control motor 0,2 ph. Az 30 V/50/60 Hz P 4 With stroke control motor 0,2 ph. Az 30 V/50/60 Hz P 4 With stroke control motor 0,2 ph. Az 30 V/50/60 Hz P 4 With stroke control motor 0,2 ph. Az 30 V/50/60 Hz P 4 With stroke control motor								-				ماح	
Union nut and stainless steel hose nozzle Version With ProMinent® logo (standard) Without ProMinent® logo M Modified With physiological safety (FDA) in respect of wetted materials Left liquid end Electrical power supply S 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph, 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz V (0) V (0) Z Speed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) M 1 ph, AC, 230 V/50/60 Hz, 0.09 kW N 1 ph, AC, 230 V/50/60 Hz, 0.09 kW N 1 ph, AC, 230 V/50/60 Hz, 0.09 kW N 1 ph, AC, 150 V 60 Hz, (Exe, Exd) P 3 ph, 265 V/440 V, 60 Hz, (Exe, Exd) No motor, C 42 flange (NEMA) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating O IP55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T3 Exd motor version ATEX-T3 Stroke sensor O No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke length adjustment O Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 115 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz													
Version With ProMinent® logo (standard) Without ProMinent® logo								-					
With ProMinent® logo (standard) Without ProMinent® logo (standard) Without ProMinent® logo Modified F													
M										roMiner	nt® logo	(standard)	
F with physiological safety (FDA) in respect of wetted materials Electrical power supply S 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph, 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz variable speed motor 3 ph, 230 V, 400 V 50/60 Hz variable speed motor + FC) Y (0) Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz variable speed motor + FC) H ph, AC, 230 V/50/60 Hz, 0.09 kW L 3 ph, 230 V/400 V, 50 Hz, (Exe, Exd) P 3 ph, 250 V/404 V, 60 Hz, (Exe, Exd) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating O IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor O No stroke sensor (standard) P acing relay (reed relay) Stroke sensor (Namur) for hazardous locations Stroke length adjustment O Manual (standard) With stroke positioning motor, 230 V/50/60 Hz With stroke positioning motor, 0.220 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 020 mA 2115 V/60 Hz With stroke control motor 020 mA 115 V/60 Hz								1	Withou	ıt ProMi	nent® lo	go	
Left liquid end Electrical power supply S 3 ph, 230 V/400 V 50/60 Hz, 0.09 kW T 3 ph, 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/6 Hz V (0) Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz Speed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) M 1 ph, AC, 230 V/50/60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 2 ph, 265 V/440 V, 60 Hz, (Exe, Exd) 2 No motor, C 42 flange (NEMA) 3 No motor, C 42 flange (NEMA) 2 Exd motor version ATEX-T3 2 Exd motor version ATEX-T3 2 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor -020 mA 115 V/60 Hz 6 With stroke control motor -020 mA 115 V/60 Hz With stroke control motor -020 mA 115 V/60 Hz With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020 mA 115 V/60 Hz 0 With stroke control motor -020													
S											ical safe	ty (FDA) in i	respect of wetted materials
S								5					
T 3 ph, 230 V/400 V 50/60 Hz, with PTC R Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 V (0) Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz Z Speed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) I ph, AC, 230 V/50/60 Hz, 0.09 kW I ph, AC 115 V 60 Hz, 0.09 kW I ph, AC 115 V 60 Hz, 0.09 kW I ph, AC 115 V 60 Hz, (Exe, Exd) J ph, 230 V/400 V, 50 Hz, (Exe, Exd) R ph, 265 V/440 V, 60 Hz, (Exe, Exd) R notor, C 42 flange (NEMA) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating R lex motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor No stroke sensor (standard) R pacing relay (reed relay) R Stroke length adjustment R with stroke positioning motor, 230 V/50/60 Hz With stroke positioning motor, 115 V/60 Hz With stroke control motor 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 020 mA 115 V/60 Hz With stroke control motor 020 mA 115 V/60 Hz													7 0 09 kW
R Variable speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/6 V (0) Z Wariable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz Speed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) I ph, AC, 230 V/50/60 Hz, 0.09 kW I ph, AC 115 V 60 Hz, 0.09 kW I ph, AC 115 V 60 Hz, (Exe, Exd) J ph, 265 V/440 V, 50 Hz, (Exe, Exd) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating O IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor O No stroke sensor (standard) 2 Pacing relay (reed relay) Stroke sensor (Namur) for hazardous locations Stroke length adjustment O Manual (standard) I With stroke positioning motor, 230 V/50/60 Hz With stroke control motor, 020 mA 230 V/50/60 Hz With stroke control motor, 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 720 mA 215 V/60 Hz With stroke control motor 720 mA 115 V/60 Hz													
V (0) Variable speed motor with integrated frequency converter 1 pH, 230 V, 50/60 Hz Speed control compl 1 ph 230 V, 50/60 Hz (variable speed motor + FC) 1 ph, AC, 230 V/50/60 Hz, 0.09 kW 1 ph, AC 115 V 60 Hz, 0.09 kW 3 ph, 230 V/400 V, 50 Hz, (Exe, Exd) No motor, C 42 flange (NEMA) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor No stroke sensor (standard) Pacing relay (reed relay) Stroke sensor (Namur) for hazardous locations Stroke length adjustment Nith stroke positioning motor, 230 V/50/60 Hz With stroke positioning motor, 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 215 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz With stroke control motor 4													
M													· · · · · · · · · · · · · · · · · · ·
N									Z	Speed	control	compl 1 ph 2	230 V, 50/60 Hz (variable speed motor + FC)
L 3 ph, 230 V/400 V, 50 Hz, (Exe, Exd) 3 ph, 265 V/440 V, 60 Hz, (Exe, Exd) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 020 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 230 V/50/60 Hz									M	1 ph, A	C, 230	//50/60 Hz,	0.09 kW
P 3 ph, 265 V/440 V, 60 Hz, (Exe, Exd) No motor, C 42 flange (NEMA) No motor, B 5, size 56 (DIN) Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz										1 ph, A	C 115 \	60 Hz, 0.09	9 kW
2 No motor, C 42 flange (NEMA) 3 No motor, B 5, size 56 (DIN) Enclosure rating 0 IP 55 (standard) 1 Exe motor version ATEX-T3 2 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor 420 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 115 V/60 Hz 5 With stroke control motor 420 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz													· · · · ·
No motor, B 5, size 56 (DIN) Enclosure rating 0									1 -				
Enclosure rating 0													
0 IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz									3			,	N)
1 Exe motor version ATEX-T3 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz													
2 Exd motor version ATEX-T4 Stroke sensor 0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 420 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz										· ·			ATEY-T3
Stroke sensor No stroke sensor (standard) Pacing relay (reed relay) Stroke sensor (Namur) for hazardous locations Stroke length adjustment Manual (standard) With stroke positioning motor, 230 V/50/60 Hz With stroke control motor, 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 420 mA 115 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz													
0 No stroke sensor (standard) 2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz										_			ALEX II
2 Pacing relay (reed relay) 3 Stroke sensor (Namur) for hazardous locations Stroke length adjustment 0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz													sensor (standard)
Stroke length adjustment 0													
0 Manual (standard) 1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz											3		
1 With stroke positioning motor, 230 V/50/60 Hz 2 With stroke positioning motor, 115 V/60 Hz 3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz												Stroke len	igth adjustment
With stroke positioning motor, 115 V/60 Hz With stroke control motor, 020 mA 230 V/50/60 Hz With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 020 mA 115 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz With stroke control motor 420 mA 115 V/60 Hz												0 Ma	anual (standard)
3 With stroke control motor, 020 mA 230 V/50/60 Hz 4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz													,
4 With stroke control motor 420 mA 230 V/50/60 Hz 5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz													
5 With stroke control motor 020 mA 115 V/60 Hz 6 With stroke control motor 420 mA 115 V/60 Hz												-	
6 With stroke control motor 420 mA 115 V/60 Hz													
												6 Wi	th stroke control motor 420 mA 115 V/60 Hz
* 10 har hai DVDE und TTT Varaian													

^{* 10} bar bei PVDF- und TTT-Version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Serienmäßig mit Schlauchtülle im Bypass. Gewindeanschluss auf Anfrage.

^{***} Innengewinde des Einlegeteils SS DN10-Rp 3/8, DN15-Rp 1/2

Motor Driven Metering Pumps

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic Type)

1.2.2 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 4 complete sealing sets (cover rings, ball seat discs)
- 4 composite seals

Spare Parts Kit for Sigma/ 1 for Design With Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT/TTT		1035964
FM 50 - DN 10	SST		1035966
FM 50 - DN 10	SST	with 2 valves cpl.	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT/TTT		1035967
FM 65 - DN 10	SST		1035969
FM 65 - DN 10	SST	with 2 valves cpl.	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT/TTT		1035961
FM 120 - DN 15	SST		1035963
FM 120 - DN 15	SST	with 2 valves cpl.	1035962

Spare Parts Kits for Sigma/ 1 for Design With Old Diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1010541
FM 50 - DN 10	SST		1010554
FM 50 - DN 10	SST	with 2 valves cpl.	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1010542
FM 65 - DN 10	SST		1010556
FM 65 - DN 10	SST	with 2 valves cpl.	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1010543
FM 120 - DN 15	SST		1010558
FM 120 - DN 15	SST	with 2 valves cpl.	1010559

1.2 Motor Driven Metering Pump Sigma/ 1 (Basic Type)

Spare Parts Kit for Sigma/ 1 for FDA Design (Physiologically Safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1046466
FM 50 - DN 10	SST	without valve	1046468
FM 50 - DN 10	SST	with valve	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1046469
FM 65 - DN 10	SST	without valve	1046471
FM 65 - DN 10	SST	with valve	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1046453
FM 120 - DN 15	SST	without valve	1046465
FM 120 - DN 15	SST	with valve	1046464

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering Diaphragm (Old Version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Accessories

- Foot Valves see page → 1-47
- Injection Valves see page → 1-49
- Connectors and Seals see page → 1-66
- Suction Lances, Suction Assemblies and Level Switches see page → 1-55
- Speed Controllers see page → 1-78
- Thermal metering monitor see page → 1-88

Spare Parts

■ Custom Accessories See page → 1-85

1.3.1

Motor Driven Metering Pump Sigma/ 1 (Control Type)

The intelligent pump for safe and reliable use in many applications.

Capacity range 17 - 117 l/h, 12 - 4 bar

The Sigma / 1 Control can be used flexibly as an extremely robust motor-driven diaphragm metering pump. Excellent process safety and reliability is guaranteed with the patented multi-layer safety diaphragm. Highlights include removable control unit, adjustable metering profiles, as well as a variety of power end and control configurations.

The Sigma/ 1 Control diaphragm metering pump together with pumps of type Sigma/ 2 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump features a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

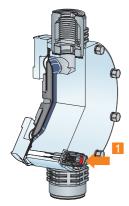
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduced pressure surges caused by blockages.
- Integrated relief valve protects the pump against overloading and bleed option during the suction process ensures reliable operation
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.

Flexible adaptation to the process:

- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by PROFIBUS®
- Adaptation to specific installation situations, as the "Liquid end on left" option is available as standard
- Customised designs are available on request

Technical details


- Stroke length: 4 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually using self-locking rotary dial in 1% increments
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit (HMI) with large illuminated LC display
- Metering profiles for optimum metering results
- Power supply: 1-phase, 100 230 V ±10%, 240 V ± 6%, 50/60 Hz (110 W)
- Degree of protection IP 65
- Fibreglass-reinforced plastic housing
- Liquid end on left is available as standard
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0129_SW Sigma/ 1 control type

P_SI_0065_C1
1: Diaphragm rupture sensor

P_SI_0153_SW Sigma / 1 Control type design, liquid end on left

P_SI_0099_SW3

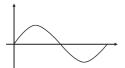
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

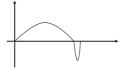
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.

Overload switch-off

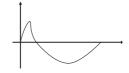
The distinguishing feature of the new Sigma product range is its automatic overload shut-down. With the Control version of the Sigma range, the motion and speed profiles are detected and evaluated together with the energy demand. This data enables the energy supply to be limited to the amount of energy actually needed. In addition, an analysis of the energy requirement leads to automatic monitoring of the metering pump in the event of an overload situation. This facilitates the internal overload shut-down, offering additional protection for the motor driven metering pump.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 F UA10S0DE

Sigma / 1 Control Type Version "Liquid End on Left Side"

This version offers additional adaptability to special installation situations, e.g. in combination with storage tanks, brackets, etc.

Identity code example: S1CbH07042PVTS01 5 UA10S0DE

P_SI_0153_SW Sigma / 1 Control type design, liquid end on left

Technical Data

Type S1Cb			ery rate at max. pressure	Max. stroke rate		ery rate at max. ressure	Suction lift	Perm. pre-pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	mWC	bar	G-DN	kg
12017 PVT	10	21	3.8	90	145	5.5	7	1	3/4–10	9
12017 SST	12	21	3.8	90	174	5.5	7	1	3/4-10	12
12035 PVT	10	42	4.0	170	145	11.1	7	1	3/4-10	9
12035 SST	12	42	4.0	170	174	11.1	7	1	3/4-10	12
10050 PVT	10	49	4.0	200	145	12.9	7	1	3/4-10	9
10050 SST	10	49	4.0	200	145	12.9	7	1	3/4-10	12
10022 PVT	10	27	5.0	90	145	7.1	6	1	3/4-10	9
10022 SST	10	27	5.0	90	145	7.1	6	1	3/4-10	12
10044 PVT	10	53	5.1	170	145	14.0	6	1	3/4-10	9
10044 SST	10	53	5.1	170	145	14.0	6	1	3/4-10	12
07065 PVT	7	63	5.2	200	102	16.6	6	1	3/4-10	9
07065 SST	7	63	5.2	200	102	16.6	6	1	3/4-10	12
07042 PVT	7	52	9.5	90	102	13.7	3	1	1–15	10
07042 SST	7	52	9.5	90	102	13.7	3	1	1–15	14
04084 PVT	4	101	9.7	170	58	26.7	3	1	1–15	10
04084 SST	4	101	9.7	170	58	26.7	3	1	1–15	14
04120 PVT	4	117	9.7	200	58	30.9	3	1	1–15	10
04120 SST	4	117	9.7	200	58	30.9	3	1	1–15	14

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

The ball seat is made of PVDF on the design "F"

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz	110 W	

Sigma/ 1 Control Type (S1Cb)

S1Cb	Drive	type															
	Н			end, dia	aphragm												
		Pump		10													
		12017	bar 12	l/h 21	07065	bar 7	l/h 63										
		12017		42	07003		52										
		10050		49	04084		101										
		10022		27	04120		117										
		10044		53	020	•											
			Dosi	ng hea	d mater	rial											
			PV	PVDF	(max. 1	0 bar)											
			SS	Stain	less stee	el											
					materia												
				Т	PTFE s												
					Displa S				dianhra	gm with	ontical	runture	indica	ator			
					A					ıgm with				atoi			
					, ,		ng hea			igiii wiiii	Olootin	our orgin	ui .				
						0				andard)							
						1				s, Haste	elloy C;	0.1 bar					
						2	with	bleed	valve, F	KM sea	l, no va	lve spri	ng				
						3				KM sea			_				
						4**			,	PM seal			_				
						5** 6**				PM seal			_				
						5^^ 7**				PDM se PDM se		-	_				
						8				PDM se							
						9			,	PDM se	,		-				
									conne								
							0	Stan	dard co	nnection	1			4		n nut and stainless steel*** insert	
							1			d PVC i				7		n nut and PVDF tube nozzle	
							2			d PP ins				8		n nut and stainless steel tube nozzle	
							3			d PVDF	insert			9	Unior	n nut and stainless steel welding sleeve)
								Vers 0		ProMine	at® Loc	^					
								1		ut ProM							
								F				_	A) in re	espect	of wet	ted materials	
								5		quid end		, ,	,	•			
									Electi	ric pow							
									U)%, 24	0 V ±6	%, 50/	60 Hz, 110 W	
											and pl						
										A B	2 m E				C D	2 m Australia 2 m USA	
										Ь					U	2 III 03A	
											Relay	No rel	av				
											1			ing rela	av (230) V, 8 A)	
											3					V, 100 mA) + pacing relay (24 V, 100 m	nA)
											8			_	ie outpi	ut + fault indicating / pacing relay (24 V	- 100 mA
												Contr					
												0				contact with pulse control	
												1 6				metering profiles ® DP interface, M 12	
Langu	1300	l	L									U			witch-		
DE	germa	an											0 0			rload switch-off	
EN	englis												0			rload switch-off	
ES	spanis	sh												Oper	ating ı	unit (HMI)	
FR	french													S	HMI ((0.5 m cable)	
IT	Italian													1		+ 2 m cable	
NL	Dutch													2		+ 5 m cable	
PL PT	Polish													3		+ 10 m cable	
IPI	D			1	1	1	1	1						Х		ut operating unit (HMI)	
1	Portug	guese															
' '	Portug	guese														ss code Lwithout access control	
	Portug	guese													0 1	without access control	
	Portug	guese													0		

^{* 10} bar with PVDF version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of insert SS DN10-Rp 3/8, DN15-Rp 1/2

Motor Driven Metering Pumps

Motor Driven Metering Pump Sigma/1 (Control Type)

1.3.2 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 4 complete sealing sets (cover rings, ball seat discs)
- 4 composite seals

Spare Parts Kit for Sigma/ 1 for Design With Multi-layer Safety Diaphragm

(For identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT/TTT		1035964
FM 50 - DN 10	SST		1035966
FM 50 - DN 10	SST	with 2 valves cpl.	1035965

(For identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT/TTT		1035967
FM 65 - DN 10	SST		1035969
FM 65 - DN 10	SST	with 2 valves cpl.	1035968

(For identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT/TTT		1035961
FM 120 - DN 15	SST		1035963
FM 120 - DN 15	SST	with 2 valves cpl.	1035962

Spare Parts Kits for Sigma/ 1 for Design With Old Diaphragm

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1010541
FM 50 - DN 10	SST		1010554
FM 50 - DN 10	SST	with 2 valves cpl.	1010555

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1010542
FM 65 - DN 10	SST		1010556
FM 65 - DN 10	SST	with 2 valves cpl.	1010557

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1010543
FM 120 - DN 15	SST		1010558
FM 120 - DN 15	SST	with 2 valves cpl.	1010559

Spare Parts Kit for Sigma/ 1 for FDA Design (Physiologically Safe)

(For Identity code: Type 12017, 12035, 10050)

Liquid end	Materials in contact with the medium		Order no.
FM 50 - DN 10	PVT		1046466
FM 50 - DN 10	SST	without valve	1046468
FM 50 - DN 10	SST	with valve	1046467

(For Identity code: Type 10022, 10044, 07065)

Liquid end	Materials in contact with the medium		Order no.
FM 65 - DN 10	PVT		1046469
FM 65 - DN 10	SST	without valve	1046471
FM 65 - DN 10	SST	with valve	1046470

(For Identity code: Type 07042, 04084, 04120)

Liquid end	Materials in contact with the medium		Order no.
FM 120 - DN 15	PVT		1046453
FM 120 - DN 15	SST	without valve	1046465
FM 120 - DN 15	SST	with valve	1046464

Spare Parts Kits for Integrated Relief Valve (S1Ca, S1Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200	
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201	
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202	

Spare Parts Kits for Integrated Bleed Valve (S1Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	For material	Seals	Order no.
ETS	PVT/SST	FKM-A/EPDM	1043785

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 50 (type 12017; 12035; 10050)	1030114
FM 65 (type 10022; 10044; 07065)	1030115
FM 120 (type 07042; 04084; 04120)	1035828

Metering Diaphragm (Old Version)

	Order no.
Sigma/ 1 FM 50 (12017; 12035; 10050)	1010279
Sigma/ 1 FM 65 (10022; 10044; 07065)	1010282
Sigma/ 1 FM 120 (07042; 04084; 04120)	1010285

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT/SST	FKM-A/EPDM	1031201
ETS overflow valve 12 bar	PVT/SST	FKM-A/EPDM	1031202

Protective cowling

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall bracket

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383

Accessories

- Foot Valvessee page → 1-47
- Injection Valves see page → 1-66
- Connectors and Seals see page → 1-66
- $\,\blacksquare\,$ Suction Lances, Suction Assemblies and Level Switches see page \rightarrow 1-55
- Speed Controllers see page → 1-78
- Thermal metering monitor see page → 1-88

Spare Parts

■ Custom Accessories See page → 1-85

1.4 Motor Driven Metering Pump Sigma/ 2 (Basic Type)

1.4.1

Motor Driven Metering Pump Sigma/ 2 (Basic Type)

The robust pump for safe and reliable use.

Capacity range 50 - 420 l/h, 16 - 4 bar

Robust motor-driven diaphragm metering pumps, like the Sigma/ 2 Basic guarantee excellent process reliability with their patented multi-layer safety diaphragm. The diaphragm metering pump offers a wide range of power end versions, even for Exe and Exde areas with ATEX certification.

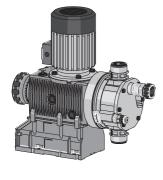
The Sigma/ 2 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 3 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

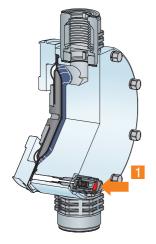
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:


- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details


- Stroke length: 5 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P_SI_0130_SW Sigma/ 2 Basic Type

P_SI_0065_C1 1: Diaphragm rupture sensor

Motor Driven Metering Pump Sigma/ 2 (Basic Type)

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions (S2Ba)

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 k Ohm response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.37 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103)

On request externally controllable via PROFIBUS® DP

Speed controllers with frequency converter (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW.

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" version comply with the FDA guideline.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S2BaHM07220PVTS00 F S000

1.4 Motor Driven Metering Pump Sigma/ 2 (Basic Type)

Technical Data

Type S2Ba	With	With 1500 rpm motor at 50 Hz				With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure suction side	Connection suction/ discharge side	Shipping weight
		Deliv	ery rate	Max. stroke		Delivery rate at max.	Max. stroke				
		back p	ressure	rate	b	ack pressure	rate				
	bar	l/h	ml/ stroke	Strokes/ min	psi	I/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg
16050 PVT	10	50	11.4	73	145	60.0/15.8	87	7	3	1–15	15
16050 SST	16	47	11.4	73	232	56.0/14.7	87	7	3	1–15	20
16090 PVT	10	88	11.4	132	145	106.0/28.0	158	7	3	1–15	15
16090 SST	16	82	11.4	132	232	98.4/25.9	158	7	3	1–15	20
16130 PVT	10	135	10.9	198	145	156.0/41.2	238	7	3	1–15	15
16130 SST	16	124	10.9	198	232	148.0/39.0	238	7	3	1–15	20
07120 PVT	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	16
07120 SST	7	126	27.4	73	102	150.0/39.6	87	5	1	1 1/2–25*	24
07220 PVT	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2–25*	16
07220 SST	7	220	27.7	132	102	264.0/69.7	158	5	1	1 1/2–25*	24
04350 PVT	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	16
04350 SST	4	350	29.4	198	58	420.0/110.9	238	5	1	1 1/2–25*	24

Performance data for TTT, see type PVT

* With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM
TTT**	PTFE + 25% carbon	PVDF	PTFE/PTFE	Ceramic/glass*	-

^{*} With 07120, 07220, 04350

Motor Data

Identity code specification	Power supply	Δ/Υ			Remarks
S	3-phase, IP 55	220 – 240 V/380 – 420 V 220 – 280 V/440 – 480 V	50 Hz 60 Hz	0.25 kW 0.25 kW	
Т	3-phase, IP 55	220 – 240 V/380 – 420 V 220 – 280 V/440 – 480 V	50 Hz 60 Hz	0.25 kW	with PTC, speed control range 1:5
R	3-phase, IP 55	220 – 240 V/380 – 420 V	50 Hz	0.37 kW	with PTC, speed control range 1:20 with external fan 1-phase 230 V; 50/60 Hz
V0	1-phase, IP 55	230 V ±5 %	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter, adjustment range 1:20
М	1-phase AC, IP 55	230 V ±5 %	50/60 Hz	0.18 kW	
N	1-phase AC, IP 55	115 V ±5 %	60 Hz	0.18 kW	
L1	3-phase, II2GEExellT3	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	
L2	3-phase, II2GEExdIICT4	220 – 240 V/380 – 420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3-phase, II2GEExellT3	250 – 280 V/440 – 480 V	60 Hz	0.18 kW	
P2	3-phase, II2GEExdIICT4	250 – 280 V/440 – 480 V	60 Hz	0.21 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{**} Specifically for areas at risk from explosion

The ball seat is made of PVDF on the design "F"

1.4 Motor Driven Metering Pump Sigma/ 2 (Basic Type)

Sigma/ 2 Basic Type (S2Ba)

S2Ba	Drive	type											
	HM		rive, dia	phragm	1								
		Pump											
				bar		l/h							
		16050		16		47							
		16090		16		82							
		16130		16		124							
		07120		7		126							
		07220		7		220							
		04350		4		350							
			Liquid	end m	aterial								
			PV		(max. 1	0 bar)							
			SS	Stainle	ss stee								
			TT	PTFE -	+ 25% c	arbon (max. 10) bar)					
				Seal m	naterial								
				Т	PTFE:	seal							
					Diaph								
					S					with option			
					Α				hragm v	with rupt	ure sign	alling (c	ontact)
							end v						
						0	No sp						
						1 4**				Hastelloy			: 1 : BV 100
						5**							spring, only with PV and SS
						5 6**							e springs, only with PV and SS
						7**							t valve spring, only with PV and SS dve spring, only with PV and SS
						/					Jivi seai	, with va	uve spring, only with PV and 55
							Hyara 0	Stand	nnectio	n			
							1			PVC ins	ort		
							2			PP inse			
							3			PVDF ir			
							4			SS*** in			
							7			PVDF h		zle	
							8			SS hose			
							9	Union	nut and	stainles	s steel h	nose noz	zzle
								Version	on				
								0		roMinen	t [®] logo	(standa	ard)
								1	Withou	ut ProMir	nent® lo	ogo	
								M	Modifie	ed			
								F	with ph	nysiologi	cal safe	ty (FDA) in respect of wetted materials
									Electr	ical pov	ver sup	ply	
									S			0 V 50/6	
									T				60 Hz, with PTC
									R		e speed	d motor 3	3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60
									V (0)	Hz Variabl	0 60000	1 motors	with integrated frequency converter 1 pH, 230 V, 50/60 Hz
									Z (0)				ph 230 V, 50/60 Hz (variable speed motor + FC)
									M			V/50/60	
									N			V, 60 Hz	
									Ĺ				Hz, (Exe, Exd)
									Р				Hz, (Exe, Exd)
									1				nge, Gr. 71 DIN
									2				NEMA 56 C
									3			_	ge, Gr. 63 DIN
										Enclos	sure rat	ina	
										0		standard	d)
										1	Exe m	otor vers	sion ATEX-T3
										2	Exd m	otor vers	sion ATEX-T4
											Stroke	senso	
						Ī		1			0		oke sensor (standard)
							Ì				2		relay (reed relay)
						Ī		1			3	Stroke	sensor (Namur) for hazardous locations
													e length adjustment
							Ì					0	Manual (standard)
						Ī		1			Ī	1	With stroke positioning motor, 230 V/50/60 Hz
												2	With stroke positioning motor, 115 V/50/60 Hz
						Ī		1			Ī	3	With stroke control motor, 020 mA 230 V/50/60 Hz
		1										4	With stroke control motor, 420 mA 230 V/50/60 Hz
1							1	1	1	I	Ì	5	With stroke control motor, 020 mA 115 V/50/60 Hz
												6	With stroke control motor, 420 mA 115 V/50/60 Hz

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN15-Rp 1/2, DN25/20-G 3/4

Motor Driven Metering Pumps

Motor Driven Metering Pump Sigma/ 2 (Basic Type)

1.4.2 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 2 ball seat discs
- 4 composite seals

Spare Parts Kit for Sigma/ 2 for Design With Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT/TTT		1035951
FM 130 - DN 15	SST		1035957
FM 130 - DN 15	SST	with 2 valves cpl.	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT/TTT		1035953
FM 350 - DN 25	SST		1035960
FM 350 - DN 25	SST	with 2 valves cpl.	1035959

Spare Parts Kits for Sigma/ 2 for Design With Old Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		740324
FM 130 - DN 15	SST		740326
FM 130 - DN 15	SST	with 2 valves cpl.	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		740325
FM 350 - DN 25	SST		740327
FM 350 - DN 25	SST	with 2 valves cpl.	740329

Spare Parts Kits for Sigma/ 2 With FDA Design (Physiologically Safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		1046472
FM 130 - DN 15	SST	without valve	1046473
FM 130 - DN 15	SST	with valve	1046474

1.4 Motor Driven Metering Pump Sigma/ 2 (Basic Type)

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		1046475
FM 350 - DN 25	SST	without valve	1046476
FM 350 - DN 25	SST	with valve	1046477

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering Diaphragm (Old Version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201
ETS overflow valve 16 bar	SST	FKM-A/EPDM	1031203

Gear Oil

	Volume	Order no.
	1	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- Foot Valves see page → 1-47
- Injection Valves see page \rightarrow 1-49
- \blacksquare Connectors and Seals see page \rightarrow 1-66
- \blacksquare Suction Lances, Suction Assemblies and Level Switches see page \rightarrow 1-55
- Speed Controllers see page → 1-78

Spare Parts

■ Custom Accessories See page → 1-85

Motor Driven Metering Pump Sigma/ 2 (Control Type)

The intelligent pump for safe and reliable use in many applications.

Capacity range 61 - 353 l/h, 16 - 4 bar

The Sigma/ 2 Control is a robust motor-driven diaphragm metering pump with a patented multi-layer safety diaphragm for outstanding process safety and reliability. The integrated automatic overload shutdown offers further protection for the pump. Removable operating unit and adjustable metering profiles enable the versatile use of this pump.

The Sigma/ 2 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 3 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

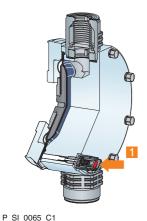
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduced pressure surges caused by blockages. =NEW Feature=
- Automatic, integrated overload shut-down to protect the pump and bleed option during the suction process to ensure reliable operation

Flexible adaptation to the process:

- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by
- Customised designs are available on request

Technical details


- Stroke length: 5 mm.
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated automatic overload switch-off as a pump protection function
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Power supply: 1-phase, $100 230 \text{ V} \pm 10\%$, $240 \text{ V} \pm 6\%$, 50/60 Hz (220 W)
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

P SI 0131 SW Sigma/ 2 control type

1: Diaphragm rupture sensor

P_SI_0099_SW3

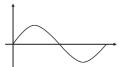
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

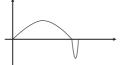
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.

Overload switch-off

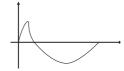
The distinguishing feature of the new Sigma product range is its automatic overload shut-down. With the Control version of the Sigma range, the motion and speed profiles are detected and evaluated together with the energy demand. This data enables the energy supply to be limited to the amount of energy actually needed. In addition, an analysis of the energy requirement leads to automatic monitoring of the metering pump in the event of an overload situation. This facilitates the internal overload shut-down, offering additional protection for the motor driven metering pump.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S2CbH16050PVTS01 F UA10S0DE

Technical Data

Type S2Cb			at max. pressure	Max. stroke rate		elivery rate at max. k pressure	Suction lift	Perm. pre-pressure suction side	Connection, suction/ discharge side	Shipping weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	mWC	bar	G-DN	kg
16050 PVT	10	61	11.4	90	145	16.1	7	3	1–15	15
16050 SST	16	56	10.4	90	232	14.8	7	3	1–15	20
16090 PVT	10	109	11.4	160	145	28.8	7	3	1–15	15
16090 SST	16	99	10.3	160	232	26.2	7	3	1–15	20
16130 PVT	10	131	10.9	200	145	34.6	7	3	1–15	15
16130 SST	16	129	10.9	200	232	34.1	7	3	1–15	20
07120 PVT	7	150	27.4	90	102	39.6	5	1	1 1/2–25	16
07120 SST	7	150	27.4	90	102	39.6	5	1	1 1/2–25	24
07220 PVT	7	271	27.7	160	102	71.6	5	1	1 1/2–25	16
07220 SST	7	271	27.7	160	102	71.6	5	1	1 1/2–25	24
04350 PVT	4	353	29.4	200	58	93.3	5	1	1 1/2–25	16
04350 SST	4	353	29.4	200	58	93.3	5	1	1 1/2–25	24

^{*} With Sigma types 07120, 07220 and 04350, the dosing head is fitted with DN 25 (G 1 1/2) valves. As DN 20 is generally sufficient for these types of pipes (see technical data, suction/discharge side connector), the connector parts that can be ordered under the identity code (e.g. inserts) are already reduced to DN 20, i.e. piping and accessories can be installed in DN 20.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Integral relief valve
PVT	PVDF	PVDF	PTFE/PTFE	Ceramic/glass*	PVDF/FKM or EPDM
SST	Stainless steel 1.4404	Stainless steel 1.4581	PTFE/PTFE	Stainless steel 1.4404	Stainless steel/FKM or EPDM

^{*} With 07120, 07220, 04350

The ball seat is made of PVDF on the design "F"

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz	220 W	

Sigma/ 2 Control Type (S2Cb)

S2Cb	Drive	e type														
2200	Н		ower e	nd, dia	phragm											
		Pump														
		10050	bar	I/h	404	bar	I/h		07000	bar	I/h					
		16050 16090	16 16	56 99		30 16 20 7	129 150		07220 04350		271 353					
			Dosii	ng hea	d material											
			PV		(max. 10 b	ar)			SS	Stainle	ess ste	el				
				Seal I	material PTFE seal											
					Displacer											
							afety dia afety dia					ndicato	r			
							d versio		i with er	ecincai	signai					
					0		alve spri			_						
					1 2		2 valve s bleed va			-		a				
					3		bleed va									
					4**		relief val									
					5** 6**		relief val relief val					_				
					7**		relief val				-	-				
					8		bleed va	,		,		•				
					ا		bleed va r aulic c e			ı, vvilii V	aive St	ning				
						0	Stand	ard con	nection				4			and stainless steel*** insert
						1 2			d PVC in d PP ins				7 8			and PVDF tube nozzle and stainless steel tube nozzle
						3			PVDF				9			and stainless steel welding sleeve
							Version									
							0		ProMine ut ProM							
							F				_	A) in re	espect	of we	tted m	naterials
								Elect i	ric pow			00/ 04	01.6	o/ E O/	/60 LI-	z, 220 W
								U	-	and pl		0%, 24	O V ±0	70, 3 0/	00 HZ	z, 220 VV
									Α	2 m E	urope		С		Austra	ılia
									В	2 m Sv Relay			D	2 m l	JSA	
										0	No re	-				
										1		indicati	-	• •		
										8						0 mA) + pacing relay (24 V, 100 mA) ault indicating / pacing relay (24 V - 100 mA
											Conti	rol ver	sions			
											0					act with pulse control ring profiles
											6					interface, M 12
													load s			assitate aff
												0				switch-off itch-off
													Oper	ating	unit (HMI)
													S 1			n cable) cable
													2			cable
													3			m cable
													Х		out op	erating unit (HMI)
														0		out access control
														1		access control
															Lan g	guage German
							1								EN	English
															ES FR	Spanish French
							1								IT	Italian
															NL	Dutch
															PL PT	Polish Portuguese
															FI	Fortuguese
					* 10	bar witl	DVDE	Voroid								

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN15-Rp 1/2, DN25/20-G 3/4 $\,$

Motor Driven Metering Pumps

1.5 **Motor Driven Metering Pump Sigma/2 (Control Type)**

1.5.2 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with PVT material version:

- 1 diaphragm
- 1 suction valve assembly
- 1 discharge valve assembly
- 2 valve balls
- 1 elastomer sealing set (EPDM, FKM-B)
- 2 ball seat discs
- 4 composite seals

Scope of delivery with SST material version:

- 1 diaphragm
- 2 valve balls
- 2 ball seat discs
- 4 composite seals

Spare Parts Kit for Sigma/ 2 for Design With Multi-layer Safety Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT/TTT		1035951
FM 130 - DN 15	SST		1035957
FM 130 - DN 15	SST	with 2 valves cpl.	1035954

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT/TTT		1035953
FM 350 - DN 25	SST		1035960
FM 350 - DN 25	SST	with 2 valves cpl.	1035959

Spare Parts Kits for Sigma/ 2 for Design With Old Diaphragm

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		740324
FM 130 - DN 15	SST		740326
FM 130 - DN 15	SST	with 2 valves cpl.	740328

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		740325
FM 350 - DN 25	SST		740327
FM 350 - DN 25	SST	with 2 valves cpl.	740329

Spare Parts Kits for Sigma/ 2 With FDA Design (Physiologically Safe)

(Applies to identity code types 16050, 16090, 16130, 12050, 12090 and 12130)

Liquid end	Materials in contact with the medium		Order no.
FM 130 - DN 15	PVT		1046472
FM 130 - DN 15	SST	without valve	1046473
FM 130 - DN 15	SST	with valve	1046474

(Applies to identity code types 07120, 07220 and 04350)

Liquid end	Materials in contact with the medium		Order no.
FM 350 - DN 25	PVT		1046475
FM 350 - DN 25	SST	without valve	1046476
FM 350 - DN 25	SST	with valve	1046477

Multi-layer Safety Diaphragm (Standard)

	Order no.
FM 130 (type: 16050, 16090, 16130)	1029771
FM 350 (type: 07120, 07220, 04350)	1033422

Metering Diaphragm (Old Version)

	Order no.
Sigma with FM 130 identity code: Type 16050, 16090, 16130	792495
Sigma with FM 350 identity code: Type 07120, 07220, 04350	792496

Spare Parts Kit for Integrated Relief Valve (S2Ca, S2Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A and EPDM O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031199	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031200	
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201	
ETS overflow valve 16 bar	SST	FKM-A/EPDM	1031203	

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare Parts Kits for Integrated Bleed Valve (S2Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

	For material	Seals	Order no.
ETS	PVT/SST	FKM-A/EPDM	1043785

Protective Cowling for Operating Unit (HMI)

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall Bracket for Operating Unit (HMI)

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383

Accessories

- Foot Valves see page → 1-47
- Injection Valves see page → 1-49
- Connectors and Seals see page → 1-66
- $\,\blacksquare\,$ Suction Lances, Suction Assemblies and Level Switches see page \rightarrow 1-55

Spare Parts

■ Custom Accessories See page → 1-85

1.6 Motor Driven Metering Pump Sigma/ 3 (Basic Type)

1.6.1

Motor Driven Metering Pump Sigma/ 3 (Basic Type)

The robust pump for safe and reliable use

Capacity range 146 - 1,030 l/h, 12 - 4 bar

The patented multi-layer safety diaphragm for excellent process safety and reliability is just one feature of the extremely robust motor-driven diaphragm metering pump Sigma/3 Basic. It also offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

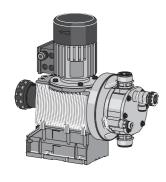
The Sigma/ 3 diaphragm metering pump together with pumps of type Sigma/ 1 and Sigma/ 2 represent an integrated product range. They cover the capacity range from 17 to 1,030 l/h, with a consistent operating concept, control concept and spare parts management. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

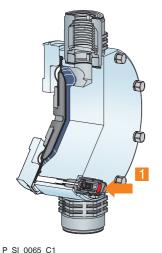
Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated relief valve protects the pump against overloading
- Reliable operation by bleed option during the suction process

Flexible adaptation to the process:

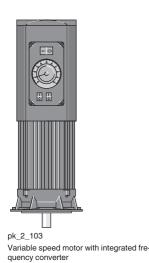

- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design.
- Metering pumps with electro-polished stainless steel metering head and EHEDG certification enable them to be used in hygienically challenging applications
- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details


- Stroke length: 6 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% with a 30-100% stroke length adjustment range under certain defined conditions and with proper installation.
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55 (optionally II2GEExeIIT3, II2GEExdIICT4)
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Addition of chemicals depending on the measured value, e.g. metering of acid and alkali for pH neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers



P_SI_0132_SW Sigma/ 3

1: Diaphragm rupture sensor

Motor Driven Metering Pump Sigma/ 3 (Basic Type)

Sigma Basic Type Control Functions (S3Ba)

Stroke length actuator/controller

Actuator with stroke positioning motor for automatic stroke length adjustment. Setting time approx. 1 sec for 1 % stroke length. Resistance potentiometer 1 k Ω . Enclosure rating IP 54.

Controller consisting of actuator with stroke positioning motor and in-built follower for stroke length adjustment via a standard signal. Standard signal current input 0/4-20 mA corresponds to stroke length 0 - 100%. Can be switched between manual and automatic operation, key switch for stroke adjustment for manual operation. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1ph 230 V, 50/60 Hz, 0.55 kW

Externally controllable with 0/4-20 mA (see Fig. pk_2_103).

On request externally controllable via PROFIBUS® DP

Speed controllers in metal housing (identity code characteristic Z)

The speed controller assembly consists of a speed controller and a 0.55 kW variable speed motor.

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material design PVT and SST and DN 25 ball valve.

Identity code example: S3BaH120330PVTS00 F S000

Motor Driven Metering Pumps

1.6 Motor Driven Metering Pump Sigma/ 3 (Basic Type)

Technical Data

Type S3Ba	Wit	th 1500	rpm moto	r at 50 Hz	With 1	800 rpm moto	or at 60 Hz	Perm. pre-	Suction	Connection,	Shipping
		at ma	ery rate ax. back ressure	Max. stroke rate		Delivery rate at max. back pressure	Max. stroke rate	pressure suction side	lift	suction/ discharge side	weight
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	bar	mWC	G-DN	kg
120145 PVT	10	146	33.7	72	145	174/45.9	86	2	5	1 1/2–25	22
120145 SST	12	146	33.7	72	174	174/45.9	86	2	5	1 1/2–25	26
120190 PVT	10	208	33.7	103	145	251/66.3	124	2	5	1 1/2–25	22
120190 SST	12	208	33.7	103	174	251/66.3	124	2	5	1 1/2–25	26
120270 PVT	10	292	33.8	144	145	351/92.7	173	2	5	1 1/2–25	22
120270 SST	12	292	33.8	144	174	351/92.7	173	2	5	1 1/2–25	26
120330 PVT*	10	365	33.8	180	_		_	2	5	1 1/2–25	22
120330 SST*	12	365	33.8	180	_		-	2	5	1 1/2–25	26
070410 PVT	7	410	95.1	72	102	492/129.9	86	1	4	2-32	24
070410 SST	7	410	95.1	72	102	492/129.9	86	1	4	2–32	29
070580 PVT	7	580	95.1	103	102	696/183.8	124	1	4	2-32	24
070580 SST	7	580	95.1	103	102	696/183.8	124	1	4	2–32	29
040830 PVT	4	830	95.1	144	58	1,000/264.1	173	1	3	2-32	24
040830 SST	4	830	95.1	144	58	1,000/264.1	173	1	3	2–32	29
041030 PVT*	4	1,030	95.1	180	_		-	1	3	2-32	24
041030 SST*	4	1,030	95.1	180	-		-	1	3	2–32	29

Performance data for TTT, see type PVT

Materials in Contact With the Medium

		DN 25	ON 25 ball valves			olate valves		
Material	Suction/pressure	Seals	Valve balls	Valve	Seals	Valve plates/valve	Valve	Integral relief valve
	connector on dosing head			seats		springs	seats	
PVT	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM
SST	Stainless steel 1.4581	PTFE	Stainless steel 1.4404	PTFE**	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/FKM or EPDM
TTT***	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	-

^{*} The valve spring is coated with CTFE (resistance similar to PTFE)

Motor Data

specification	Power supply	Δ/Υ			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW 0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed control range 1:5
R	3 ph, IP 55	220-240 V/380-420 V	50 Hz	0.55 kW	With PTC, speed adjustment range 1:20 with separate fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	0.55 kW	Variable speed motor with integrated frequency converter, control range 1:20 (1 ph, 230 V, 50/60 Hz)
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.55 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.55 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.37 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter. Mains feed: 3 ph + neutral + earth, control range 1:10

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Only available for 50 Hz.

^{***} Specifically for areas at risk from explosion

On design "F", the ball seat is made of PVDF, only for DN 25 ball valves

1.6 Motor Driven Metering Pump Sigma/ 3 (Basic Type)

Sigma/ 3 Basic Type (S3Ba)

S3Ba		ve type											
	Н	Main driv		ohragm									
		Pump ty		1/1-				h	1/1-				
		120145	bar 12	I/h 146			070410	bar 7	l/h 410				
		120190		208			070580		580				
		120270	12	292			040830	4	830				
		120330		365			041030	4	1,030				
			Liquio PV	d end m			or)						
			SS	Stainle			ai)						
			TT				oon (max.	10 bar)				
				Seals									
				Т		E sea phrag							
					S			ety diap	hragm	with optic	al rupture indicator		
					Α	Multi	-layer saf	ety diap	hragm	with ruptu	re signalling (contact)		
							id end ve		_				
						0	No valve With 2 va			astellov C	4; 0.1 bar (standard for DN 32)		
						4			•		seal, no valve springs, only with PV and SS		
						5					eal with valve springs (standard at DN 32), only with PV and SS		
						6 7					seal, without valve spring, only with PV and SS seal, with valve springs (standard at DN 32), only with PV and SS		
						1	Hydraul				i seal, with valve springs (standard at DN 32), only with FV and 33		
							0				nector (as technical data)		
							1	-		PVC inse			
							2			PP inser			
							4			SS** ins			
							7	Union	nut and	PVDF ho	se nozzle		
							8			SS hose			
							9	Version		stainless	steel hose nozzle		
								0		roMinent	® logo		
								1 Without ProMinent® logo					
								M Modified E with physiclegical potety (EDA) in respect of watted metarials (aply for 12 hor varying)					
								F with physiological safety (FDA) in respect of wetted materials (only for 12 bar version) Electrical power supply					
									S		0 V/400 V		
									T		0 V/400 V, with PTC		
									R V (0)		speed motor 3 ph, 230/400 V, with PTC, with external fan 1 ph 230 V 50/60 Hz speed motor with integrated frequency converter 1 ph, 230 V, 50/60 Hz		
									Z		ontrol compl 1 ph 230 V//400 V (variable speed motor + FC)		
									M	1 ph, 23	0 V		
									N	1 ph, 11			
									L P		0 V/400 V, 0.37 kW, 50 Hz, (Exe, Exd) 5 V/440 V, 0.37 kW, 60 Hz, (Exe, Exd)		
									V (2)		speed motor with integr. FC Exd (delivery with frame)		
									1		or, with B5 flange, size 80 (DIN)		
									2		or, with C56 NEMA flange		
									3		vr, with B5 flange, size 71 (DIN) ure rating		
										0	IP 55		
										1	Exe motor version ATEX-T3		
										2	Exd motor version ATEX-T4		
											Stroke sensor No stroke sensor (standard)		
											Pacing relay (read relay)		
											3 Stroke sensor (Namur) for explosion-proof application		
											Stroke length adjustment 0 Manual (standard)		
											With stroke positioning motor, 230 V/50/60 Hz		
											2 With stroke positioning motor, 115 V/50/60 Hz		
											3 With stroke control motor 020 mA 230 V/50/60 Hz		
											With stroke control motor 420 mA 230 V/50/60 Hz With stroke control motor 020 mA 115 V/50/60 Hz		
											6 With stroke control motor 420 mA 115 V/50/60 Hz		
* 10 ba	r fo	r the PV	DF an	d TTT	vers	sion							

^{* 10} bar for the PVDF and TTT versior

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

^{**} Internal thread of the insert SS DN25-Rp 1, DN32-Rp 1 1/4

Motor Driven Metering Pumps

1.6 Motor Driven Metering Pump Sigma/ 3 (Basic Type)

1.6.2 **Spare Parts**

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- 1 x metering diaphragm
- 1 x suction valve compl.
- 1 x pressure valve compl.
- 2 x valve balls or valve plate with spring for DN 32
- 1 x elastomer seal set (EPDM, FKM-B)
- 2 x ball seat bushings
- 2 x ball seat washers
- 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm
- 2 x valve balls or valve plate with spring for DN 32
- 2 x ball seat washers
- 4 x formed composite seals

Spare Parts Kits Sigma/ 3 for Design With Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT/TTT		1034678
FM 330 - DN 25	SST		1034679
FM 330 - DN 25	SST	with 2 valves cpl.	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT/TTT		1034681
FM 1000 - DN 32	SST		1034682
FM 1000 - DN 32	SST	with 2 valves cpl.	1034683

Spare Parts Kits for Sigma/ 3 for Design With Old Diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1005308
FM 330 - DN 25	SST		1005310
FM 330 - DN 25	SST	with 2 valves cpl.	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT		1020032
FM 1000 - DN 32	SST		1005311
FM 1000 - DN 32	SST	with 2 valves cpl.	1005313

Spare Parts Kit for Sigma/ 3 With FDA Design (Physiologically Safe)

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1046478
FM 330 - DN 25	SST	without valve	1046479
FM 330 - DN 25	SST	with valve	1046480

1.6 Motor Driven Metering Pump Sigma/ 3 (Basic Type)

Multi-layer Safety Diaphragm (Standard)

	Order no.	
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604	
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603	

Metering Diaphragm (Old Version)

	Order no.	
FM 330 Identity code: Type 120145, 120190, 120270, 120330	1004604	
FM 1000 Identity code: Type 070410, 070580, 040830, 041030	1002835	

Spare Parts Kits for Integrated Relief Valve

Consisting of two compression springs made from Hastelloy C and four FKM-A O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031204	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031205	
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201	
ETS overflow valve 12 bar	SST	FKM-A/EPDM	1031202	

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Accessories

- Foot Valves see page → 1-47
- Injection Valves see page → 1-49
- \blacksquare Connectors and Seals see page \rightarrow 1-66
- Suction Lances, Suction Assemblies and Level Switches see page → 1-55
- Speed Controllers see page → 1-78

Spare Parts

■ Custom Accessories See page → 1-85

1.7.1

P_SI_0101_SW

Sigma/ 3 control type

Motor Driven Metering Pump Sigma/ 3 (Control Type)

The intelligent pump for safe and reliable use in many applications Capacity range 182 - 1,040 l/h, 12 - 4 bar

The motor-driven diaphragm metering pump Sigma/ 3 Control guarantees excellent process reliability, thanks to its patented multi-layer safety diaphragm. Intelligent features, such as removable operating unit and adjustable metering profiles, as well as a variety of power end and control configurations, enable the versatile use of this pump.

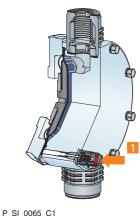
The Sigma/ 3 Control diaphragm metering pump together with pumps of type Sigma/ 1 Control and Sigma/ 2 Control represent an integrated product range. They cover the capacity range from 17 to 1,040 l/h. The entire Sigma Control product range is equipped with intelligent features to provide a high level of operating convenience, safety and efficiency. The pump product range has a removable operating unit and adjustable metering profiles to ensure optimum metering results.

Your benefits

Excellent process safety and reliability:

- In the event of an accident, the feed chemical does not escape to the outside nor into the pump's power end, thanks to the patented multi-layer safety diaphragm with optical (optionally electric) signalling
- Integrated overload shut-down in the pump control to protect the pump from overloading and thus significantly reduced pressure surges caused by blockages.
- Integrated relief valve protects the pump against overloading and bleed option during the suction process ensures reliable operation

Flexible adaptation to the process:


- Detachable operating unit with large illuminated LC display for outstanding user convenience
- Metering profiles for optimum metering results
- The entire Sigma product range is available as standard in a "Physiologically safe in respect of wetted materials" design and with electro-polished stainless steel dosing head and EHEDG certification for applications with strict hygiene requirements
- Different control options are available, as well as easy connection to bus-networked systems by PROFIBUS®
- Customised designs are available on request

Technical details

- Stroke length: 6 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 1% increments (optionally with actuator or control drive)
- Metering reproducibility is better than ± 2% in the 30 100% stroke length adjustment range under defined conditions and with correct installation
- Wetted materials: PVDF, stainless steel 1.4571/1.4404, special materials on request
- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with diaphragm rupture warning system via a contact)
- Integrated hydraulic relief and bleed valve
- Removable operating unit with large illuminated LC display
- Metering profiles for optimum metering results
- Degree of protection IP 65
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps.

Field of application

- Volume-proportional addition of chemicals in water treatment, e.g. sodium-calcium hypochlorite for the disinfection of potable water
- Neutralisation in waste water treatment
- Time-controlled addition of chemicals in the cooling water circuit
- Pulse-controlled metering in the bottling of different volumes e.g. glycerin filling of manometers

1: Diaphragm rupture sensor

Motor Driven Metering Pumps

1.7 Motor Driven Metering Pump Sigma/ 3 (Control Type)

P SI 0099 SW3

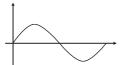
Detachable Operating Unit (HMI)

The operating unit (HMI) can be attached directly to the metering pump or mounted on the wall alongside the pump. This provides the operator with a range of options for the integration of a metering system in the overall system that it is readily accessible and easy to use. Moreover the removable operating unit offers additional protection against unauthorised operation of the metering pump or against modification of the pump settings. The operating unit can, for example, be completely removed for project applications.

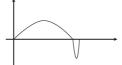
Individual functions of the metering pump can be easily selected and adjusted with five program keys. An illuminated LCD display provides information about the relevant operating status. LEDs on the operating unit and the control unit indicate the active pump functions or the pump status.

Overload switch-off

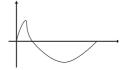
The distinguishing feature of the new Sigma product range is its automatic overload shut-down. With the Control version of the Sigma range, the motion and speed profiles are detected and evaluated together with the energy demand. This data enables the energy supply to be limited to the amount of energy actually needed. In addition, an analysis of the energy requirement leads to automatic monitoring of the metering pump in the event of an overload situation. This facilitates the internal overload shut-down, offering additional protection for the motor driven metering pump.


Metering Profiles

Metering profiles guarantee optimum metering results by adapting the metering behaviour of the metering pump to the application or chemical used.


The stroke motion of the displacement body is continually recorded and regulated so that the stroke is made in line with the desired metering profile. The pump can be operated in normal mode (Diagram 1), with optimised discharge stroke (Diagram 2) or with optimised suction stroke (Diagram 3). Three typical metering profiles are shown schematically with the behaviour over time.

In normal operating mode, the time behaviour for the suction stroke and the discharge stroke is similar (Diagram 1). In the mode with optimised discharge stroke (Diagram 2), the discharge stroke is lengthened while the suction stroke is made as quickly as possible. This set-up is suited to applications which require optimum mixing and as continuous a mixing of chemicals as possible, for example.


In the mode with the optimised suction stroke (diagram 3), the suction stroke is carried out as slowly as possible, permitting precise and trouble-free metering of viscous and gaseous media. Select this setting to minimise the NPSH value as well.

P_SI_0102_SW
Diagram 1: Discharge stroke, suction stroke equal

P_SI_0103_SW
Diagram 2: Long discharge stroke, short suction stroke

P_SI_0104_SW
Diagram 3: Short discharge stroke, long suction stroke

"Physiologically Safe (FDA) in Respect of Wetted Materials" Version

All wetted materials in the "Physiologically safe (FDA) in respect of wetted materials" design comply with the FDA guidelines.

FDA guidelines:

- Material PTFE: FDA No. 21 CFR § 177.1550
- Material PVDF: FDA No. 21 CFR § 177.2510

Available for material version PVT and SST.

Identity code example: S1CbH07042PVTS01 F UA10S0DE

Technical Data

Type S3Cb	Delivery rate at max. back pressure		Max. stroke rate	-	ate at max. k pressure	Suction lift	Perm. pre- pressure suction side	Connection, suction/ discharge side	Shipping weight	
	bar	l/h	ml/ stroke	Strokes/ min	psi	gph (US)	mWC	bar	G-DN	kg
120145 PVT	10	182	33.7	90	145	48.0	5	2	1 1/2–25	22
120145 SST	12	182	33.7	90	174	48.0	5	2	1 1/2–25	26
120190 PVT	10	243	33.7	120	145	64.1	5	2	1 1/2–25	22
120190 SST	12	243	33.7	120	174	64.1	5	2	1 1/2–25	26
120270 PVT	10	365	33.8	180	145	96.4	5	2	1 1/2–25	22
120270 SST	12	365	33.8	180	174	96.4	5	2	1 1/2–25	26
070410 PVT	7	500	95.1	90	102	132.0	4	1	2–32	24
070410 SST	7	500	95.1	90	102	132.0	4	1	2–32	29
070580 PVT	7	670	95.1	120	102	176.9	4	1	2–32	24
070580 SST	7	670	95.1	120	102	176.9	4	1	2-32	29
040830 PVT	4	1,040	95.1	180	58	274.7	3	1	2–32	24
040830 SST	4	1,040	95.1	180	58	274.7	3	1	2–32	29

Materials in Contact With the Medium

		DN 25 ball valves			DN 32 plate valves			
Material	Suction/pressure connector on the dosing head		Valve balls	Valve seats	Seals	Valve plates/ valve springs	Valve seats	Integral relief valve
PVT	PVDF	PTFE	Glass	PTFE**	PTFE	Ceramic/ Hast C. + CTFE*	PTFE	PVDF/FKM or EPDM
SST	Stainless steel 1.4581	PTFE	Stainless steel 1.4404	PTFE**	PTFE	Stainless steel 1.4404/ Hast. C	PTFE	Stainless steel/FKM or EPDM

^{*} The valve spring is coated with CTFE (resistance similar to PTFE)

Motor Data

Identity code specification		Power supply			Remarks
U	1-phase, IP 65	100 - 230 V ±10 % / 240 V ±6 %	50/60 Hz	420 W	

^{**} The ball seat is made of PVDF on design "F"

Sigma/ 3 Control type (S3Cb)

S3Cb	Dri	ive type													
		Main pov	wer e	nd, dia	phra	agm									
		Pump ty	/pe												
				l/h				I/h			bar	l/h			
		120145	12	182		120270 070410		365		070580		670			
		120190	12	243				500		040830	4	1,040			
			PV			naterial ax. 10 ba									
			SS			steel	21)								
				Seal	mat	erial									
				Т	PTF	E seal									
					_	placeme									
					S		,	,		agm with				cator	•
					Α	Multi-layer safety diaphragm with electrical signal									
						Dosing head version 0 no valve spring (standard)									
						1			_	•	,	; 0.1 ba	ar (st	anda	ard for DN 32)
						2				, FKM se	-				,
						3	with	bleed	valve	, FKM se	al, with	valve s	spring	9	
						4**				FPM sea			_		
						5** 6**				FPM sea					
						7**				EPDM se					
						8				, EPDM s	,			_	
						9				, EPDM s				-	
							Hyd			nector					
							0			connectio				4	Union nut and stainless steel*** insert
							1			and PVC and PP in				7 8	Union nut and PVDF tube nozzle Union nut and stainless steel tube nozzle
							3			and PVDF				9	Union nut and stainless steel tube nozzle Union nut and stainless steel welding sleeve
								Vers		ana i vbi	1110011				Chief hat and standed steel wording sleeve
								0		n ProMine	nt® Lo	go			
								1		nout ProM		_			
								F			_	, ,	DA) i	n res	spect of wetted materials (only for 12 bar version)
									U	ctric pow			% 24	10 V	±6%, 50/60 Hz, 420 W
										Cable a			, o, <u>-</u>		2070, 00700 112, 120 17
										A		urope		С	2 m Australia
										В	2 m S	wiss		D	2 m USA
											Relay				
											0	No rel	•	tina	relay (230 V, 8 A)
											3			_	relay (24 V, 100 mA) + pacing relay (24 V, 100 mA)
											8			_	ogue output + fault indicating / pacing relay (24 V - 100 mA)
												Contr			9 , 9 ,
												0			+ external contact with pulse control
												1			nalogue + metering profiles
												6	_		ROFIBUS® DP interface, M 12
													0ve		d switch-off hout overload switch-off
													0		hout overload switch-off
Langu	age			1											erating unit (HMI)
DE		rman												S	HMI (0.5 m cable)
EN		glish												1	HMI + 2 m cable
ES		anish												2	HMI + 5 m cable
FR IT		ench ian												3 X	HMI + 10 m cable without operating unit (HMI)
NL		tch												^	Access code
PL	_	lish													0 without access control
PT		rtuguese													1 with access control

^{* 10} bar with PVDF version.

EHEDG-certified (European Hygienic Eng. Design Group) electropolished stainless steel dosing heads (< Ra 0.8) type EL class I are available on request.

We are happy to supply alternative material versions to comply with export conditions for pump capacities > 600 l/h and PVDF.

^{**} Standard with tube nozzle in the bypass. Threaded connection on request.

^{***} Internal thread of the insert SS DN25-Rp 1, DN32-Rp 1 1/4

Motor Driven Metering Pumps

Motor Driven Metering Pump Sigma/ 3 (Control Type)

1.7.2 **Spare Parts**

The replacement part kit in general includes wear parts for the liquid ends.

Scope of delivery for material PVT

- 1 x metering diaphragm
- 1 x suction valve compl.
- 1 x pressure valve compl.
- 2 x valve balls or valve plate with spring for DN 32
- 1 x elastomer seal set (EPDM, FKM-B)
- 2 x ball seat bushings
- 2 x ball seat washers
- 4 x formed composite seals

Scope of delivery for material SST

- 1 x metering diaphragm
- 2 x valve balls or valve plate with spring for DN 32
- 2 x ball seat washers
- 4 x formed composite seals

Spare Parts Kits Sigma/ 3 for Design With Multi-layer Safety Diaphragm

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT/TTT		1034678
FM 330 - DN 25	SST		1034679
FM 330 - DN 25	SST	with 2 valves cpl.	1034680

(For Identity code: type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT/TTT		1034681
FM 1000 - DN 32	SST		1034682
FM 1000 - DN 32	SST	with 2 valves cpl.	1034683

Spare Parts Kits for Sigma/ 3 for Design With Old Diaphragm

(Applies to identity code: Type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1005308
FM 330 - DN 25	SST		1005310
FM 330 - DN 25	SST	with 2 valves cpl.	1005312

(Applies to identity code: Type 070410, 070580, 040830, 041030)

Liquid end	Materials in contact with the medium		Order no.
FM 1000 - DN 32	PVT/PPT/PCT		1020032
FM 1000 - DN 32	SST		1005311
FM 1000 - DN 32	SST	with 2 valves cpl.	1005313

Spare Parts Kit for Sigma/ 3 With FDA Design (Physiologically Safe)

(For Identity code: type 120145, 120190, 120270, 120330)

Liquid end	Materials in contact with the medium		Order no.
FM 330 - DN 25	PVT		1046478
FM 330 - DN 25	SST	without valve	1046479
FM 330 - DN 25	SST	with valve	1046480

Motor Driven Metering Pumps

1.7 Motor Driven Metering Pump Sigma/ 3 (Control Type)

Multi-layer Safety Diaphragm (Standard)

	Order no.	
FM 330 identity code: type 120145, 120190, 120270, 120330	1029604	
FM 1000 identity code: type 070410, 070580, 040830, 041030	1029603	

Metering Diaphragm (Old Version)

	Order no.	
FM 330 Identity code: Type 120145, 120190, 120270, 120330	1004604	
FM 1000 Identity code: Type 070410, 070580, 040830, 041030	1002835	

Spare Parts Kit for Integrated Relief Valve (S3Ca, S3Cb)

Consisting of two compression springs made from Hastelloy C and four FKM-A O-rings each

	For material	Seals	Order no.	
ETS overflow valve 4 bar	PVT/SST	FKM-A/EPDM	1031204	
ETS overflow valve 7 bar	PVT/SST	FKM-A/EPDM	1031205	
ETS overflow valve 10 bar	PVT	FKM-A/EPDM	1031201	
ETS overflow valve 12 bar	SST	FKM-A/EPDM	1031202	

Gear Oil

	Volume	Order no.
	I	
Mobilgear 634 VG 460 gear oil	1	1004542

Spare Parts Kits for Integrated Bleed Valve (S3Cb)

Consisting of a compression spring made from Hastelloy C and four FKM-A and EPDM O-rings each For identity code specification "Dosing head version" with characteristic "2", "3", "8", "9"

		Pump type	For material	Seals	Order no.
•	ETS	120145, 120190, 120270	PVT/SST	FKM-A/EPDM	1043785
	ETS	070410, 070580, 040830	PVT/SST	FKM-A/EPDM	1043786

Protective Cowling for Operating Unit (HMI)

Protection of the operating unit (HMI) of Sigma metering pumps against contamination; made from transparent silicone plastic. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Protective cowling for operating unit (S1Cb, S2Cb, S3Cb)	1036724

Wall Bracket for Operating Unit (HMI)

Wall bracket with operating lever for wall mounting of the operating unit (HMI) without any fittings. For Sigma control types S1Cb / S2Cb / S3Cb.

	Order no.
Wall bracket for operating unit (S1Cb, S2Cb, S3Cb)	1036683

Extension cable for operating unit (HMI)

	Order no.
Connecting cable - CAN M12 5-pole 1 m	1022139
Connecting cable - CAN M12 5-pole 2 m	1022140
Connecting cable - CAN M12 5-pole 5 m	1022141
Connecting cable - CAN M12 5-pin 10 m	1046383

Accessories

- Foot Valves see page → 1-47
- Injection Valves see page → 1-49
- Connectors and Seals see page \rightarrow 1-66
- \blacksquare Suction Lances, Suction Assemblies and Level Switches see page \rightarrow 1-55

Spare Parts

■ Custom Accessories See page → 1-85

1.8.1 Foot Valves for Motor Driven Metering Pumps

For connection to the end of the suction line, used as a vacuum breaker and for protection of the pump against contamination. With filter meshes and ball check. Materials used as in the pump liquid ends. Union nuts and inserts/tube nozzles are included in the scope of supply with DN 10 and DN 15 foot valve sizes.

Important: Foot valves are not suitable as absolutely leak-tight shut-off devices.

Ø D2 Ø D1 Ø D2 P_AC_0206_SW

PPE Foot Valve

Housing made of PP, seals made of EPDM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809465	_
DN 15	1	66	47	142	20	924516	
DN 20	1 1/4	77	55	-	_	803721	
DN 25	1 1/2	84	60	-	-	803722	
DN 32*	2	98	74	-	_	1006434	
DN 40	2 1/4	113	90	-	-	1004204	

^{*} PVDF/Teflon version

PCB Foot Valve

Housing made of PP, seals made of FKM, with filter meshes and ball check (glass).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	59	40	101	16	809464
DN 15	1	66	47	142	20	924515
DN 20	1 1/4	77	55	_	-	803723
DN 25	1 1/2	84	60	-	-	803724
DN 32*	2	98	74	-	-	1006434
DN 40	2 1/4	113	90	-	-	1004193

^{*} PVDF/Teflon version

PVT foot valve

Housing made of PVDF, seals made of PTFE, with filter meshes and ball check (ceramic).

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	58	36	92	16	1029471	
DN 15	1	64	48	131	20	1029472	
DN 20	1 1/4	78	58	-	-	1029473	
DN 25	1 1/2	81	65	-	-	1029474	
DN 32	2	98	74	-	-	1006434	
DN 40	2 1/4	108	83	-	-	1029475	

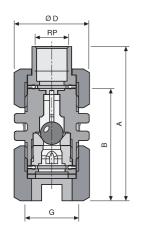
Ø D2 Ø D1 Ø D1 P_AC_0202_SW

Foot Valve TTT

Housing made of PTFE, seals made of PTFE, with filter meshes and ball check (ceramic).

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

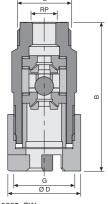
	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	59	40	101	16	809466	
DN 15	1	66	47	142	20	924517	
DN 20	1 1/4	81	57	-	_	803725	
DN 25	1 1/2	86	64	-	-	803726	
DN 32*	2	98	74	-	_	1006434	
DN 40	2 1/4	116	89	-	-	1004205	


PVDF/Teflon version

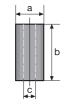
Foot Valve SST

SS housing, PTFE seals spring-loaded with ball check (1.4571/1.4581).

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts


	G	Α	В	Rp	Ø D	Order no.
		mm	mm		mm	
DN 10	3/4	75	56	3/8	37	809467
DN 15	1	83	59	1/2	48	924518
DN 20	1 1/4	_	73	-	55	803727
DN 25	1 1/2	-	82	-	63	803728
DN 32	2	_	92	-	75	1006435
DN 40	2 1/4	_	109	-	90	1004206

P_AC_0204_SW

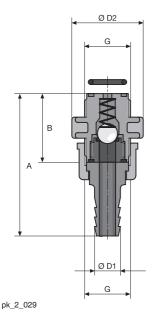

Foot Valve SST for High-Pressure Metering Pumps

	G	В	Rp	ØD	Order no.
		mm		mm	
DN 10	3/4	70	1/4	41	803730
DN 10	3/4	70	3/8	41	803731

P_AC_0205_SW

Ceramic Weight for Vertical Alignment

ρk	1	082


	ØA	В	ØС	Weight	Order no.
	mm	mm	mm	g	
Size 3	40	50	24	70	1030189

1.8.2 Injection Valves for Motor Driven Metering Pumps

For connecting the metering line to the metering station; metering valves consist of a non-return ball valve and a Hastelloy C spring (0.5 bar pre-pressure) and can be installed in any position. Used for generating pressure and preventing backflow. Materials match those in the pump liquid ends. Metering valve sizes DN 10 and 15 come with the required union nut and insert/hose socket.

Important: Metering valves are not suitable for use as tight-sealing shut-off elements.

PPE Injection Valve

PP housing, EPDM seals with spring-loaded ball check (glass), priming pressure approx. $0.5\,\mathrm{bar}$.

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

 $25~^{\circ}\text{C}$ - max. operating pressure 16 bar $50~^{\circ}\text{C}$ - max. operating pressure 9 bar

	G	В	Ø D2	Α	Ø D1	Order no.
		mm	mm	mm	mm	
DN 10	3/4	41	40	83	16	809461
DN 15	1	43	47	108	20	924521
DN 20	1 1/4	55	55	_	-	803710
DN 25	1 1/2	60	58	-	-	803711
DN 32*	2	68	70	_	-	1002783
DN 40	2 1/4	85	84	-	-	804761

^{*} PVDF/Teflon version

PCB Injection Valve

 $PVC\ housing, FKM\ seals\ with\ spring-loaded\ ball\ check\ (glass),\ priming\ pressure\ approx.\ 0.5\ bar.$

DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

Operating range

 $25~^{\circ}\text{C}$ - max. operating pressure 16 bar $45~^{\circ}\text{C}$ - max. operating pressure 7 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	41	40	83	16	809460	
DN 15	1	43	47	108	20	924520	
DN 20	1 1/4	55	55	-	_	803712	
DN 25	1 1/2	60	58	-	-	803713	
DN 32*	2	68	70	-	_	1002783	
DN 40	2 1/4	85	84	-	-	804760	

^{*} PVDF/Teflon version

PVT Injection Valve

PVDF housing, PTFE seals with spring-loaded ball check (ceramic), priming pressure approx. 0.5 bar.

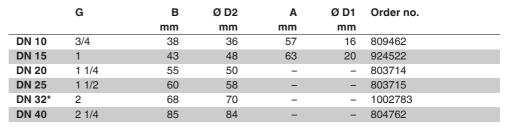
DN 10, DN 15 with union nut and PP tube nozzle

DN 20 to DN 40 no connection parts

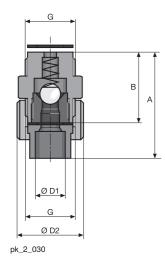
Operating range

25 °C - max. operating pressure 16 bar 65 °C - max. operating pressure 10 bar

	G	В	Ø D2	Α	Ø D1	Order no.	
		mm	mm	mm	mm		
DN 10	3/4	40	36	84	16	1029476	
DN 15	1	43	48	110	20	1029477	
DN 20	1 1/4	55	52	-	_	1029478	
DN 25	1 1/2	61	56	-	-	1029479	
DN 32	2	68	70	-	-	1002783	
DN 40	2 1/4	85	81	-	-	1029480	


TTT Injection Valve

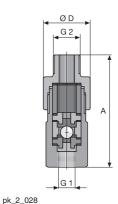
PTFE housing and seals with spring-loaded ball check (ceramic), priming pressure approx. 0.5 bar.


DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

25 °C - max. operating pressure 10 bar 90 °C - max. operating pressure 5 bar

PVDF/Teflon version

SST Injection Valve


SS housing, PTFE seals with ball check (1.4571/1.4581), priming pressure approx. 0.5 bar.

DN 10, DN 15 with union nut and insert DN 20 to DN 40 no connection parts

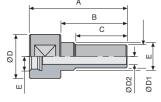
Applications

90 °C - max. operating pressure, see table

	G	Max. pressu- re	В	Ø D2	Α	Ø D1	Order no.
		bar	mm	mm	mm		
DN 10	3/4	320	38	36	55	3/8	809463
DN 15	1	240	43	48	63	1/2	924523
DN 20	1 1/4	130	55	55	_		803716
DN 25	1 1/2	70	60	58	-		803717
DN 32	2	45	69	68	_		1002801
DN 40	2 1/4	25	85	84	-		804763

SST Injection Valve

To fit metering pumps of the product ranges Sigma, Meta and Makro TZ-HK.


Housing and valve spring made of stainless steel no. 1.4571, ball made of stainless steel no. 1.4401, PTFE seals, priming pressure approx. 0.1 bar.

Applications

90 °C - max. operating pressure, see table

	G2	ØD	Α	Order no.	
ar		mm	mm		
0 Rp 1/4	Rp 1/2	42	85	803732	
0 Rp 3/8	Rp 1/2	42	90	803733	
	re ar 20 Rp 1/4	re ar 20 Rp 1/4 Rp 1/2	re mm 20 Rp 1/4 Rp 1/2 42	re mm mm 20 Rp 1/4 Rp 1/2 42 85	re mm mm 20 Rp 1/4 Rp 1/2 42 85 803732

PVDF Metering Valve Adapter

P_	AC_	0201	_SW

E	Α	В	С	ØD	Ø D1	Ø D2	Order no.
	mm	mm	m	mm	mm	mm	
R 3/4	93	63	49	42	22	15	1022052
R 1	95	65	50	47	27	18	1022053
G 1 1/4*	150	119	104	56	27	18	1040722
G 1 1/2*	171	135	118	64	31	20	1040723

^{*} In set with 1 x FKM and 1 x EPDM O-ring.

1.8.3

Back Pressure Valves / Relief Valves for Motor Driven Metering Pumps

DHV-U series back pressure valves can be used universally and are back pressure-free piston diaphragm valves with an internal flow. They can be used to generate a constant back pressure, used as relief valves and be assembled anywhere in the pipework system.

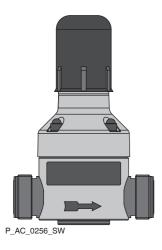
Back pressure valves are used to generate a constant back pressure for precise chemical feed and/or to protect against over metering with a free outlet, fluctuating back pressure or to dose into a vacuum. They can also be used in conjunction with pulsation dampers for low-pulsation metering.

Relief valves are installed in the bypass to protect pumps, pipework and fittings from excess pressure as a result of operational errors or blockages. In the event of a malfunction, the pump conveys in a loop or back into the storage tank.

Important: Back pressure valves cannot be used as absolutely leak-tight shut-off devices. All relevant safety precautions should be taken when using with hazardous chemicals.

Important: Appropriate safety measures should be implemented when using as relief valves in conjunction with agglutinative media (e. g. milk of lime) (for instance flushing after activation).

Back Pressure Valve / Relief Valve Type DHV-U


Adjustable pressure 0.5 - 10 bar

Applications of PPE / PPB / PCE / PCB

20 °C - max. operating pressure 10 bar

Applications of PVT / SST

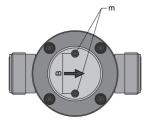
30 °C - max. operating pressure 10 bar

Туре	Nominal diameter	G	Order no.
PPE	DN 10	3/4	1037285
PPB	DN 10	3/4	1038133
PCE	DN 10	3/4	1038144
PCB	DN 10	3/4	1037765
PVT	DN 10	3/4	1037767
SST	DN 10	3/4	1043194
PPE	DN 15	1	1036816
PPB	DN 15	1	1038145
PCE	DN 15	1	1038146
PCB	DN 15	1	1037764
PVT	DN 15	1	1037766
SST	DN 15	1	1043193
PPE	DN 20	1 1/4	1037284
PPB	DN 20	1 1/4	1038147
PCE	DN 20	1 1/4	1038148
PCB	DN 20	1 1/4	1037775
PVT	DN 20	1 1/4	1037777
SST	DN 20	1 1/4	1043192
PPE	DN 25	1 1/2	1036633
PPB	DN 25	1 1/2	1038149
PCE	DN 25	1 1/2	1038150
PCB	DN 25	1 1/2	1037774
PVT	DN 25	1 1/2	1037776
SST	DN 25	1 1/2	1043191

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PVDF	EPDM	EPDM
PPB	PP	PVDF	FKM	FKM
PCE	PVC	PVDF	EPDM	EPDM
PCB	PVC	PVDF	FKM	FKM
PVT	PVDF	PVDF	PTFE*	FKM
SST	1.4404	1.4404	PTFE*	PTFE

^{*} Cover ring made of PTFE/FKM


Z O

Dimensions of DHV-U (PP, PV, PVDF version)

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	24	79	M6	40
15	1	144*	118	24	79	M6	40
20	1 1/4	196*	150	37	99	M6	46
25	1 1/2	196*	150	37	99	M6	46

Approximate values

P_AC_0256_m

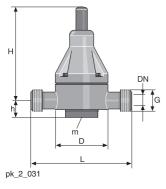
Dimensions of DHV-U (SS version)

DN	G	Н	L	h	D	m	В
		mm	mm	mm	mm		mm
10	3/4	144*	118	20	79	M6	40
15	1	144*	118	20	79	M6	40
20	1 1/4	196*	150	30	99	M6	46
25	1 1/2	196*	150	30	99	M6	46

Approximate values

P_MOZ_0005_SW

Back Pressure Valve / Relief Valve Type DHV 712-R


Adjustable pressure 0.5 - 10 bar

Applications of PPE / PCB

20 °C - max. operating pressure 10 bar

Applications of PVT / TT / SS

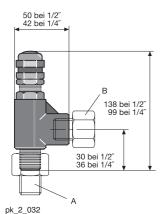
30 °C - max. operating pressure 10 bar

Туре	G	Nominal diameter	Order no.
PPE	2	DN 32	1000035
PPE	2 1/4	DN 40	1000036
PCB*	2	DN 32	1000051
PCB*	2 1/4	DN 40	1000052
PVT	2	DN 32	1000057
PVT	2 1/4	DN 40	1000058
TT	3/4	DN 10	1000059
TT	1	DN 15	1000060
TT	1 1/4	DN 20	1000061
TT	1 1/2	DN 25	1000062
TT	2	DN 32	1000063
TT	2 1/4	DN 40	1000064
SS	2	DN 32	1000069
SS	2 1/4	DN 40	1000070

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Pk_2_031

Dimensions of DHV 712-R


DN	G	Н	L	h	D	m
		mm	mm	mm	mm	
32	2	260	205	59** / 37***	147	M8
40	2 1/4	260	205	59** / 37***	147	M8

- *= Approx. values;
- ** = PP, PVC, PVDF;
- *** = TT, SS

Materials

Type	Housing/Connectors	Plungers	Plunger Seal	Seal/Connectors
PPE	PP	PP	EPDM	EPDM
PCB	PVC	PVC	FKM	FKM
PVT	PVDF	PTFE ²	PTFE ³	FKM
TT	PTFE with carbon	PTFE ²	PTFE ³	PTFE ³

- ² PTFE (white)
- 3 Packing ring PTFE/FKM

Back Pressure Valve / Relief Valve for High-Pressure Systems

Use as a pressure relief valve (adjustable) and as a back pressure valve. Overflow valve and corresponding spring must be ordered separately.

Material: stainless steel 316/FKM

Temperature range: -18 °C to 120 °C

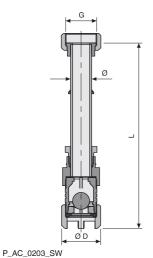
Recommended Use up to 200 l/h

	Connection	Order no.
Overflow valve	1/4" NPT inner and outer thread	202505
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	202519
24.0 – 52 bar	yellow	202520
52.0 – 103 bar	violet	202525
103.0 - 155 bar	orange	202524
155.0 – 207 bar	brown	202523
207.0 - 276 bar	white	202522
276.0 – 345 bar	red	202521

Recommended Use up to 300 l/h

	Connection	Order no.
Overflow valve	1/2" NPT inner and outer thread	1005499
Spring for pressure range	Spring colour	Order no.
3.4 – 24 bar	blue	1005500
24.0 - 50 bar	yellow	1005501
50.0 - 100 bar	violet	1005502

Reducing Pipe Nipple


Connection	Order no.
1/4" NPT inner - 1/4 K outer (A)	359378
1/4" NPT outer - 1/4 inner (B)	359379
1/2" NPT inner - 1/2 K outer (A)	1005503
1/2" NPT outer - 1/2 inner (B)	1005504

For use as an adjustable safety relief valve and as a back pressure valve. Relief valve and corresponding spring must be ordered separately

1.8.4

Suction Lances, Suction Assemblies and Level Switches for Motor Driven Metering Pumps

PPE Suction Assembly for 1,000 Litre Tank

Connection	G	Ø	ØD	L	Order no.	
		mm	mm	mm		
DN 10	3/4	20	47	1,340	790389	
DN 15	1	20	47	1,320	790394	
DN 20	1 1/4	25	55	1,345	790395	
DN 25	1 1/2	32	60	1,315	790396	
DN 32	2	40	74	1,170	1005524	

Suction assembly without level switch for connection to 1,000 litre tanks, comprising a support pipe, foot valve and threaded fitting. The length L of the support pipe can be adjusted (shortened) by the customer.

Note: In applications with a hose the suction assembly/hose connector kit, consisting of a PVDF screw-in nozzle and a PTFE composite seal, can be used.

Suction Assembly PCB for 1,000 Litre Storage Tank

Connection	G	Ø	ØD	L	Order no.	
		mm	mm	mm		
DN 10	3/4	20	47	1,340	790387	
DN 15	1	20	47	1,320	790391	
DN 20	1 1/4	25	55	1,345	790392	
DN 25	1 1/2	32	60	1,315	790393	
DN 32	2	40	74	1,170	1005525	

Suction assembly without level switch for connection to 1,000 litre tanks, comprising a support pipe, foot valve and threaded fitting. The length L of the support pipe can be adjusted (shortened) by the customer.

Note: In applications with a hose the suction assembly/hose connector kit, consisting of a PVDF screw-in nozzle and a PTFE composite seal, can be used.

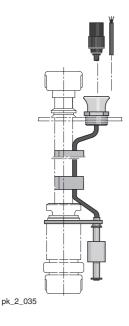
Please note: The product contains connections bonded with Tangit. Always note the durability of Tangit adhesive.

Level Switch Kit Complete, PVDF, Two-Stage with Round Connector or Lead

The level switch kit can be ordered together with the suction fittings DN 10 - DN 32.

For level monitoring in the storage tank, two-phase with pre-alarm signalling and deactivation of the metering pump after a further level decrease of 30 mm.

Max. switching voltage: 100 V
Switching current: 0.5 A
Switching capacity: 5 W/5 VA
Temperature range: - 10 °C to 65 °C


IP rating: IP 67

Switching mode: for level shortage 2 x NC

Material:

Body level switch PVDF, float PE, mounting strap PVDF, cable bracket PE, anti-kink device PE, cable PE.

Connection	Туре	Cable length	Order no.
		m	
DN10/15	with 3-pin round plug	3	1034879
DN 20	with 3-pin round plug	3	1034880
DN 25	with 3-pin round plug	3	1034881
DN 32	with 3-pin round plug	3	1034882
DN 10/DN 15	with lead	5	1034883
DN 20	with lead	5	1034884
DN 25	with lead	5	1034885
DN 32	with lead	5	1034886

P_AC_0252_SW

- A Overall length
- B Immersion depth
- C Diameter of the immersion tube Threaded connector adjustment range
- E Warning level adjustment range
- Switch-off level adjustment range

PPE Universal Suction Lance

Universal suction lance made of PP in 4 sizes for use in canisters, drums or tanks. The suction lance is configured as standard with return, ventilation function and 2-stage level monitoring. The height-adjustable level switch and tank threaded connectors ensure flexible adaptation to the process or tank height. In addition, the suction tube length can easily be shortened by the customer. A PTFE check valve is incorporated and prevents the suction line from running dry.

The suction lance is supplied with all additional parts in cardboard packaging.

Material version: PP with EPDM seals.

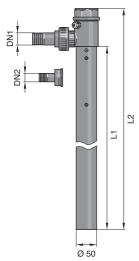
Suction connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, DN 20, DN 25 (not for canisters) plus FKM seal do form part of the scope of delivery.

Return connector is not supplied ready mounted. Fittings and pressure hose nozzles in DN 10, DN 15, plus an FKM blanking plug and seal do form part of the scope of delivery.

Level: In drum and tank lances the level switches are protected by tube pieces. The lance level output is in the form of an M12 plug. Please order the level signal cable for connection to ProMinent metering pumps or a PLC or terminal box separately.

General Electrical Accessories → 1-80

Note: Special designs are available on request.


Universal suction lance	Α	В	С	Total adjustment range			Order no.
				D	Е	F	
	mm	mm	mm	mm	mm	mm	
For canister 20 I	542	405	41	100	250	200	1039206
For canister 20 - 60 I	584	447	41	100	300	200	1038817
For drum 200 I	1,072	935	51	50	700	700	1039397
For container IBC	1,162	1,025	51	50	800	800	1039399

PPE Universal Suction Lance, "Physiologically Safe" Design

The universal suction lance is also available as a "Physiologically safe (FDA) in respect of wetted materials" design.

Universal suction lance	Α	В	С	Total adjustment range			Order no.
				D	E	F	
	mm	mm	mm	mm	mm	mm	
For 20-litre canister	542	405	41	100	250	200	1046668
For 20 – 60-litre canister	584	447	41	100	300	200	1046670
For 200-litre drum	1,072	935	51	50	700	700	1046671
For IBC tank	1,162	1,025	51	50	800	800	1046672

pk_2_100

Suction Lance with Two-Stage Level Switch

Suction lance with 2-stage level switch in Ø 50 PVC protection tube with check valve for DN 10-DN 25, clack valve in DN 32 (valve is not removable).

For sizes DN 10/15 and DN 20/25, the connection parts in both sizes and a blanking plate for the return form part of the scope of supply. For the DN 32 suction lance a return line is not possible. Drum suction lances are equipped with a drum lid.

2-stage level switch is wired to a terminal in the head.

The level sensor cable must be ordered separately.

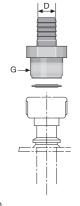
Special designs (materials, functions, Dytex adhesive etc.) are available on request.

Reed cable with 3-pin round plug, $PE \rightarrow 1-80$

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction Lance for 200/600 I Drum

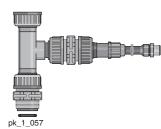
Туре	Suction connector DN 1	Return DN 2	Seal material	L1	L2	Order no.
				mm	mm	
PCB	10/15	10/15	FKM	1000	1100	1037748
PCE	10/15	10/15	EPDM	1000	1100	1037749
PCB	20/25	20/25	FKM	1000	1100	1037750
PCE	20/25	20/25	EPDM	1000	1100	1037751
PCB	32	-	FKM	1000	1100	1037752
PCE	32	-	EPDM	1000	1100	1037753


Suction Lance for 1000 I Tank

Туре	Suction connector DN 1	Return DN 2	Seal material	L1	L2	Order no.
				mm	mm	
PCB	10/15	10/15	FKM	1200	1300	1037722
PCE	10/15	10/15	EPDM	1200	1300	1037723
PCB	20/25	20/25	FKM	1200	1300	1037744
PCE	20/25	20/25	EPDM	1200	1300	1037745
PCB	32	_	FKM	1200	1300	1037746
PCE	32	-	EPDM	1200	1300	1037747

Intake Fitting - Hose Connection Kit

Suitable for PPE Suction assembly for 1,000 I tank → 1-55



pk_2_140

Connection	G	Material	ØD	Order no.
			mm	
DN 10	3/4	PVDF	16	1029486
DN 15	1	PVDF	20	1029487
DN 20	1 1/4	PVDF	25	1029488
DN 25	1 1/2	PVDF	32	1029489
DN 32	2	PVDF	40	1029490

1.8.5

Fittings

Flushing Assemblies for Motor Driven Metering Pumps

Flushing assemblies for flushing and cleaning liquid end, metering line and metering valve as well as for preventing deposits.

PPE Flushing Device

Connection	G	Order no.
DN 10	3/4	809917
DN 15	1	809919
DN 20	1 1/4	809921
DN 25	1 1/2	809923

Other sizes on request.

PCB Flushing Assembly

Connection	G	Order no.
DN 10	3/4	809926
DN 15	1	803960
DN 20	1 1/4	803961
DN 25	1 1/2	803962
DN 40	2 1/4	803963

* Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive. Spüleinrichtungsautomatik zum vollautomatischen Spülen des Pumpenkopfes ist auf Anfrage möglich. Other sizes and automatic flushing device for fully automatic flushing of the pump head on request.

1.8.6

Pulsation Damper

DIN ISO 228-G1 VG8 PD-Inline 0,5: 169 PD-Inline 0,2: 129

PVDF In-Line Pulsation Damper

Function: Hydropneumatic accumulator with baffle

The PVDF accumulator with PTFE diaphragm offers outstanding resistance to chemicals and can therefore be used in connection with a large number of different liquids. The pulsation damper has two liquid connections and can therefore be installed directly in the piping system or be installed diagonally using a blanking plug kit. The baffle in the liquid valve directs the volume flow straight at the diaphragm. This ensures direct contact of the volume flow with the diaphragm. Fluctuations in volume flow are thus optimally balanced out by the enclosed gas volume.

Important: Pulsation dampers should be protected by an overflow valve.

_	
Ø11	
Ø11	
6 A Day	
158	>
9 0000	
+ 0 0	
#	

pk_2_106_1

Type	Volume	Max. pressure	Connection	Order no.	
	I	bar			
PD In-line	0.2	10	G 1 – DN 15	1026252	
PD In-line	0.5	10	G 1 – DN 15	1026736	
PD-Inline	0.2	16	G 1 – DN 15	1033446	
PD-Inline	0.5	16	G 1 – DN 15	1033447	
PD-Inline	0.2	25	G 1 – DN 15	1036154	
PD In-line	0.5	25	G 1 – DN 15	1036155	

The priming pressure is approximately 0.6 x the operating pressure. Maximum medium temperature, 65 $^{\circ}$ C. Connection parts must be ordered separately.

Filling of the reservoir with nitrogen takes place via the VG8 gas filling connector or with compressed air using a standard filling valve (e.g. a car tyre valve).

Attention: If using combustible liquids, nitrogen must be used as a filling gas.

Do not use oxygen under any circumstances!

Configuration: DGRL97/23/EC, other acceptances / countries upon request

Fluid group: 1 and 2

Certificates: Manufacturer's test certificate M DIN55350-18

Wetted materials - FDA physiologically safe

Manufacturer: HYDAC Technology

Connection/Adapter Kits

Consisting of PTFE-formed composite seal, insert/adapter and union nut.

Connection PD In-line	Connection Piping	Material	Order no.
G 1 – DN 15	DN 10	PP	1029424
G 1 – DN 15	DN 10	PVC	1029425
G 1 – DN 15	DN 10	PVDF	1029426
G 1 – DN 15	DN 15	PP	1029443
G 1 – DN 15	DN 15	PVC	1029444
G 1 – DN 15	DN 15	PVDF	1029445
G 1 – DN 15	DN 20	PP	1029427
G 1 – DN 15	DN 20	PVC	1029428
G 1 – DN 15	DN 20	PVDF	1029429
G 1 – DN 15	DN 25	PP	1029430
G 1 – DN 15	DN 25	PVC	1029431
G 1 – DN 15	DN 25	PVDF	1029432

Accessories/Spare Parts

	Material	Order no.
Set of plugs	PVDF/PTFE	1029446
Valve tool for gas valve insert	Stahl	1029661
Separating diaphragm	PTFE/NBR	1025235
Gas valve assembly	1.4571/FKM/PTFE/MS	1029513
Gas valve insert	FKM/PTFE/MS	1029514
Gas valve insert	FKM/PTFE /NIRO	1029515
Manometer with connection adapter	-	1031556
Charging hose with connector for compressed air system, 25 bar; 2.5 m	-	1036156
Charging hose with connector for nitrogen bottle or pressure reducer	-	1036157

A G

pk_2_101 Admissible operating temperature: -10 to +80 °C. Response pressure: 2 bar (nitrogen). Other accumulator/diaphragm materials available on request.

Stainless Steel Pulsation Damper

Volume	Max. pressure	Diaphragm material	Connector G	Α	ØD	Order no.
I	bar			mm	mm	
0.16	180	NBR	Rp 1/2	124	74	1008609
0.16	180	Butyl	Rp 1/2	124	74	1008610
0.16	180	FKM	Rp 1/2	124	74	1008611
0.32	160	NBR	Rp 1/2	137	93	1008612
0.32	160	Butyl	Rp 1/2	137	93	1008613
0.32	160	FKM	Rp 1/2	137	93	1008644
0.75	140	NBR	Rp 1/2	168	121	1008645
0.75	140	Butyl	Rp 1/2	168	121	1008646
0.75	140	FKM	Rp 1/2	168	121	1008647
2.00	100	NBR	Rp 3/4	224	167	1008648
2.00	100	Butyl	Rp 3/4	224	167	1008649
2.00	100	FKM	Rp 3/4	224	167	1008650
4.00	50	NBR	Rp 3/4	360	170	1008651
4.00	50	Butyl	Rp 3/4	360	170	1008652
4.00	50	FKM	Rp 3/4	360	170	1008653
0.75	140	NBR	Rp 1	168	121	1027617
0.75	140	Butyl	Rp 1	168	121	1027618
0.75	140	FKM	Rp 1	168	121	1027619
2.00	100	NBR	Rp 1 1/2	224	167	1027620
2.00	100	Butyl	Rp 1 1/2	224	167	1027621
2.00	100	FKM	Rp 1 1/2	224	167	1027622
4.00	50	NBR	Rp 1 1/2	360	170	1027623
4.00	50	Butyl	Rp 1 1/2	360	170	1027624
4.00	50	FKM	Rp 1 1/2	360	170	1027625

Mounting Clamp for Stainless Steel Pulsation Damper

Volume	Number of Clamps	Ø D	Order no.
1		mm	
0.16	1	74	1008664
0.32	1	93	1008665
0.75	1	121	1008666
2.00	1	167	1008667
4.00	2	170	1008668

pk_2_102

Motor Driven Metering Pumps

1.8 Hydraulic/Mechanical Accessories

Inflation and testing unit for pulsation damper

The inflation and testing unit is used to recharge accumulators with nitrogen and check or alter the existing pre-filling pressure.

It contains:

- Checking and filling system with pressure gauge, non-return valve on the inlet, integrated bleed valve, valve stem to open gas inlet valve on accumulator.
- Charging hose, Length 2 m

Adjustment range	Order no.
Up to 25 bar	1008769
Up to 100 bar	1008669
Up to 250 bar	1008670

Pulsation Damper (in-line)

The pulsation damper is used to produce minimal pulsation metering and to reduce flow resistance in long discharge lines.

The gas cushion between the housing and the line is compressed at a pressure stroke of the metering pump, a partial quantity of the medium being simultaneously metered into the metering line. The excess pressure generated in the gas cushion has the effect of allowing the compressed volume to continue to be transported with the following suction stroke and the original, relieved gas volume is restored.

Important notice: The pulsation damper should be used in conjunction with a relief valve.

PP In-Line Damper

Damper diaphragm is replaceable, seals made of EPDM.

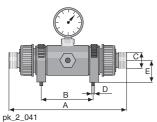
Medium temperature max. 50 °C

Pre-pressure is approx. 0.6 x operating pressure.

1/2	_
	1
87.5	
	}
67	
Ø 17 Ø 9	

P_AC_0180_SW

	Volume	Max. pressure	Damper diaphragm	Connection	Order no.
	1	bar			
PPE in-line damper	0.05	10	CSM*	G 3/4 - DN 10	1026769
PPB in-line damper	0.05	10	FKM	G 3/4 - DN 10	1026772
PDS 2.5	2.50	8	Hypalon	G 2 – DN 32	1001344
PDS 2.5	2.50	8	FKM	G 2 – DN 32	1001345


^{*} Chlorosulfonated polyethylene

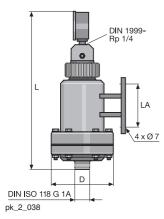
For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

For other sizes (0.2 I and 0.5 I), see PVDF inline pulsation damper.

PVC In-Line Damper

Removable hose, FKM seals.

pn_2_0								
Туре	Dimen	sions						
	Α	В	С	D	E			
PDS 2.5	541	525	G2	11	99.5			


	Volume	Max. pressure	Damper diaphragm	Connection	Order no.
	I	bar			
PCE in-line damper	0.05	10	CSM*	G 3/4 – DN 10	1026775
PCB in-line damper	0.05	10	FKM	G 3/4 – DN 10	1026778
PDS 2.5	2.50	8	Hypalon	G 2 – DN 32	1001342
PDS 2.5	2.50	8	FKM	G 2 – DN 32	1001343

^{*} Chlorosulfonated polyethylene

For other sizes (0.2 I and 0.5 I) see in-line pulsation damper PVDF.

1.8.7

Accumulators

Pulsation dampers with separating bubble for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing the flow resistance in long metering lines and in connection with viscous media. The response pressure of the gas cushion should be approx. 60-80 % of the operating pressure.

Important: When using a pulsation damper, the pressure relief valve should be fitted with an adjustable back pressure valve.

PVC Accumulators

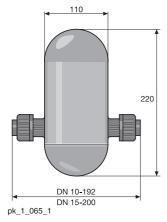
Accumulator removable, FKM seals.

Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 - DN 15	361	145	100	791691
0.5	FKM	G 1 - DN 15	361	145	100	791695
1.0	Butyl	G 1 1/4 - DN 20	411	170	100	791692
1.0	FKM	G 1 1/4 - DN 20	411	170	100	791696
2.5*	Butyl	G 1 1/2 - DN 25	571	170	190	791693
2.5*	FKM	G 1 1/2 - DN 25	571	170	190	791697
5.0*	Butyl	G 2 1/4 - DN 40	936	170	230	791694
5.0*	FKM	G 2 1/4 - DN 40	936	170	230	791698

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

PP Accumulators

Accumulator removable, FKM seals.


Volume	Diaphragm material	Connection	L	ØD	LA	Order no.
I			mm	mm	mm	
0.5	Butyl	G 1 - DN 15	361	145	100	792128
0.5	FKM	G 1 - DN 15	361	145	100	792132
1.0	Butyl	G 1 1/4 - DN 20	411	170	100	792129
1.0	FKM	G 1 1/4 - DN 20	411	170	100	792133
2.5	Butyl	G 1 1/2 - DN 25	571	170	190	792130
2.5	FKM	G 1 1/2 - DN 25	571	170	190	792134
5.0	Butyl	G 2 1/4 - DN 40	936	170	400	792131
5.0	FKM	G 2 1/4 - DN 40	936	170	400	792135

1.8.8

Accumulators Without Diaphragm

Pulsation dampers with no diaphragm separating the gas cushion and the chemical are used to produce minimal pulsation metering and to reduce flow resistance in long pipes and when metering viscous liquids.

Important: When using accumulators or pulsation dampers it is imperative that a relief valve with an adjustable back pressure valve is fitted.

PP In-Line Pressure Accumulator

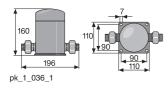
Operating range

20 °C - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume I	Permissible displacement	Connection	Order no.
Size II	1	up to 5 ml	G 3/4 – DN 10	243219
Size II	1	up to 5 ml	G 1 – DN 15	243220

PVC In-Line Accumulator


Operating range

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

40 °C - max. operating pressure 6 bar

	Volume	Permissible displacement	Connection	Order no.
	I			
Size II	1	up to 5 ml	G 3/4 – DN 10	243204
Size II	1	up to 5 ml	G 1 – DN 15	243205

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Stainless Steel In-Line Accumulator

Max. operating pressure 10 bar

	Volume	Connection		Order no.	
	1				
Size II	1	G 3/4 – DN 10	_	914756	
Size II	1	R 1 1/2 – DN 15	with insert	914551	

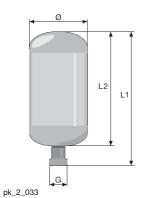
L2 L1

pk_2_042

PP Pressure Accumulator

Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	290	220	243211
4	G 1 1/2 – DN 25	without connector parts	160	410	320	243212

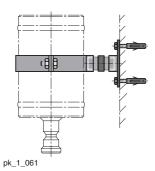
PVC Pressure Accumulator


Operating range

20 $^{\circ}\text{C}$ - max. operating pressure 10 bar

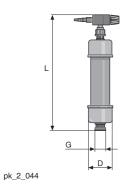
40 $^{\circ}\text{C}$ - max. operating pressure 6 bar

Volume	Connection		Ø	L1	L2	Order no.
I			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	290	220	243207
4	G 1 1/2 – DN 25	without connector parts	160	410	320	243208


^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Stainless Steel Accumulator

Max. operating pressure 10 bar


Volume	Connection		Ø	L1	L2	Order no.
1			mm	mm	mm	
2	G 1 1/4 – DN 20	without connector parts	140	272	222	243214
4	G 1 1/2 – DN 25	without connector parts	160	365	312	243215

Wall Bracket for Accumulator

Consists of pipe clamp, mounting plate and connecting nipple.

	Ø	Order 110.
	mm	
For accumulator volume 2 I	110	818502
For accumulator volume 2 I	140	803645
For accumulator volume 4 I	160	803646

PVC Vacuum Cylinder

With vacuum pump connector and central housing part made of transparent PVC.

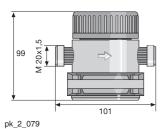

Seals: FKM or EPDM.

Max. operating pressure 2 bar at 40 °C operating temperature.

Volume	Connection	Seal material	L	D	Order no.
I			mm	mm	
0.5	G 1 – DN 15	FKM	380*	78	243591
0.5	G 1 – DN 15	EPDM	380*	78	1025699
1.0	G 1 1/4 – DN 20	FKM	440*	86	243592
1.0	G 1 1/4 – DN 20	EPDM	440*	86	1025701
2.5	G 1 1/2 – DN 25	FKM	520*	133	243593
2.5	G 1 1/2 – DN 25	EPDM	520*	133	1025702
5.0	G 2 1/4 – DN 40	FKM	630*	155	243594
5.0	G 2 1/4 – DN 40	EPDM	630*	155	1025703

^{*} Approximate values

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.


Vacuum Pump Assembly / Priming Aid

For pulsation dampers, suction side (vacuum cylinder accumulator).

Material	Seal material	Order no.
PVC	EPDM	790019

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Suction pressure regulator

The suction pressure regulator is a spring-loaded diaphragm valve (max. 50 l/h) which opens as a result of the pump suction pressure. This ensures that chemicals cannot flow when the pump is not running, nor can a vacuum be created as a result of tube rupture.

A ball check valve should be fitted to prevent undesirable suction action at the pump outlet (e.g. siphon effect).

An adjustable spring is used to set the maximum required negative pressure for each operating situation up to 400 mbar. For pumps with positive inlet pressure a minimal vacuum of approx. 50 mbar is sufficient. The pump should produce this vacuum in any case, even for an atmospheric pressure inlet.

Technical Data

Max. flow rate	50 l/h
Max. feed pressure	4 bar
Max. intake pressure	0.3 bar
Max. temperature	40 °C
Housing material	PVC
Diaphragm material	FKM
Seal material	FKM
Ball material	Glass
Spring material	Hastelloy C

Туре		Connection	Order no.
SDR 50	For solenoid-driven pumps	M 20 x 1,5	1005505
SDR 50	For motor-driven pumps up to 50 l/h	G 3/4 - DN 10	1005506

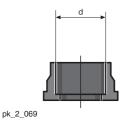
Connection parts to be ordered separately.

^{*} Caution: The product contains adhesive joints with Tangit. Please note the resistance of Tangit adhesive.

Motor Driven Metering Pumps

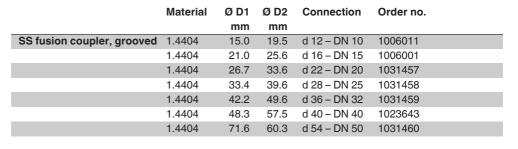
1.8 Hydraulic/Mechanical Accessories

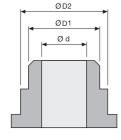
1.8.9


Connectors and Seals for Motor Driven Metering Pumps

Union Nuts

	Material	Connection	Order no.
Union nut	PP	G 5/8 – DN 8	800665
	PP	G 3/4 – DN 10	358613
	PP	G 1 – DN 15	358614
	PP	G 1 1/4 – DN 20	358615
	PP	G 1 1/2 - DN 25	358616
	PP	G 2 - DN 32	358617
	PP	G 2 1/4 - DN 40	358618
	PP	G 2 3/4 - DN 50	358619
	PVC	G 5/8 – DN 8	800565
	PVC	G 3/4 – DN 10	356562
	PVC	G 1 – DN 15	356563
	PVC	G 1 1/4 – DN 20	356564
	PVC	G 1 1/2 - DN 25	356565
	PVC	G 2 - DN 32	740690
	PVC	G 2 1/4 - DN 40	356567
	PVC	G 2 3/4 - DN 50	356568
	PVDF	G 3/4 – DN 10	358813
	PVDF	G 1 - DN 15	358814
	PVDF	G 1 1/4 - DN 20	358815
	PVDF	G 1 1/2 - DN 25	358816
	PVDF	G 2 - DN 32	1003639
	PVDF	G 2 1/4 - DN 40	358818
	PVDF	G 2 3/4 - DN 50	358819
	1.4571	G 3/4 – DN 10	805270
	1.4571	G 1 - DN 15	805271
	1.4571	G 1 1/4 - DN 20	805272
	1.4571	G 1 1/2 - DN 25	805273
	1.4571	G 2 - DN 32	805274
	1.4571	G 2 1/4 - DN 40	805275
	1.4571	G 2 3/4 - DN 50	805276

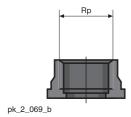

Insert



	Material	Connection	Order no.
Fusion socket	PP	d 12 – DN 8	800666
	PP	d 16 – DN 10	358603
	PP	d 20 – DN 15	358604
	PP	d 25 – DN 20	358605
	PP	d 32 – DN 25	358606
	PP	d 40 – DN 32	358607
	PP	d 50 – DN 40	358608
	PP	d 63 – DN 50	358609
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	358805
	PVDF	d 32 – DN 25	358806
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	358808
	PVDF	d 63 – DN 50	358809

	Material	Connection	Order no.
Fusion coupler, grooved*	PP	d 16 – DN 10	1001785
	PP	d 20 – DN 15	1001395
	PP	d 25 – DN 20	1036258
	PP	d 32 – DN 25	1001787
	PP	d 40 – DN 32	1005105
	PP	d 50 – DN 40	1025960
	PP	d 63 – DN 50	1019207
	PVDF	d 16 – DN 10	358803
	PVDF	d 20 – DN 15	358804
	PVDF	d 25 – DN 20	1036259
	PVDF	d 32 – DN 25	1001788
	PVDF	d 40 – DN 32	1003640
	PVDF	d 50 – DN 40	1025959
	PVDF	d 63 – DN 50	1019208

^{*} To be used together with ProMinent® PTFE formed composite seals.



P_AC_0210_SW

	Material	Connection	Order no.	
Adhesive socket	PVC	d 16 – DN 10	356572	
	PVC	d 20 – DN 15	356573	
	PVC	d 25 – DN 20	356574	
	PVC	d 32 – DN 25	356575	
	PVC	d 40 – DN 32	356576	
	PVC	d 50 – DN 40	356577	
	PVC	d 63 – DN 50	356578	

	Material	Connection	Order no.
Adhesive coupler, grooved*	PVC	d 16 – DN 10	1001784
	PVC	d 20 – DN 15	1001394
	PVC	d 25 – DN 20	1036257
	PVC	d 32 – DN 25	1001786
	PVC	d 40 – DN 32	1005104
	PVC	d 50 – DN 40	1025961
	PVC	d 63 – DN 50	1019206

^{*} To be used together with ProMinent® PTFE formed composite seals.

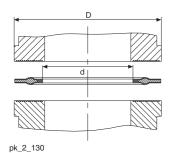
	Material	Connection	Order no.	
Threaded pipe socket	1.4404	Rp 3/8 – DN 10	805285	
	1.4404	Rp 1/2 – DN 15	805286	
	1.4404	Rp 3/4 – DN 20	805287	
	1.4404	Rp 1 – DN 25	805288	
	1.4404	Rp 1 1/4 – DN 32	805289	
	1.4404	Rp 1 1/2 – DN 40	805290	
	1.4404	Rp 2 – DN 50	805291	

Pressure Hose Nozzles

nk	2	046
pĸ_		_046

	Material	Connection	Order no.	
Pressure hose nozzle	PP	d 16 – DN 10	800657	
	PP	d 20 – DN 15	800655	
	PP	d 25 – DN 20	800656	
	PP	d 32 – DN 25	811418	
	PVC	d 16 – DN 10	800554	
	PVC	d 20 – DN 15	811407	
	PVC	d 25 – DN 20	811408	
	PVC	d 32 – DN 25	811409	
	PTFE	d 16 – DN 10	811572	
	PTFE	d 20 – DN 15	811424	
	PTFE	d 25 – DN 20	811425	
	PTFE	d 32 – DN 25	811426	
	PVDF	d 40 – DN 32	1005106	
	1.4571	d 16 – DN 10	810536	
	1.4571	d 20 – DN 15	810567	
	1.4571	d 25 – DN 20	810568	
	1.4571	d 32 – DN 25	810569	
	1.4571	d 40 – DN 32	1005360	
	Material	Connection	Order no.	
Hose nozzle, grooved	PVDF	d 16 – DN 10	1002288	

	Material	Connection	Order no.	
Hose nozzle, grooved	PVDF	d 16 – DN 10	1002288	
	PVDF	d 20 – DN 15	740632	
	PVDF	d 25 – DN 20	1006014	
	PVDF	d 32 – DN 25	1005560	
	PVDF	d 40 – DN 32	1005106	


To be used together with ProMinent® PTFE formed composite seals.

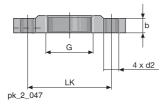
Stainless Steel Threaded Clip

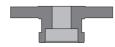
For connecting intake and metering line to pressure hose nozzle.

	Clamping range	Order no.
	mm	
DN 10 clamping ring	16 – 25	359703
DN 15 clamping ring	20 – 32	359705
DN 20 clamping ring	25 – 40	359706
DN 25 clamping ring	32 – 50	359707
DN 32 clamping ring	40 – 60	1002777

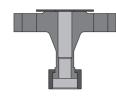
PTFE Formed Composite Seals

Formed composite seals to be used on grooved sealing surfaces (e.g. pump valve and grooved inserts from ProMinent).


DN	Material	D	d	Order no.
		mm	mm	
DN 10	PTFE	23.8	14.0	1019364
DN 15	PTFE	29.5	18.0	1019365
DN 20	PTFE	38.0	22.6	1019366
DN 25	PTFE	44.0	27.6	1019367
DN 32	PTFE	56.0	34.6	1019353
DN 40	PTFE	62.0	40.6	1019368


d D D pk_2_048

Set of elastomer flat packing seals


Comprising two EPDM and two FKM seals. An elastomer flat seal should be used with non-grooved sealing surfaces. Leaks may occur at the connection if a PTFE shaped composite seal is used.

	D	d	Order no.
	mm	mm	
DN 10	23.5	14.0	1024159
DN 15	29.5	18.0	1024160
DN 20	38.0	22.6	1036254
DN 25	44.0	28.0	1024161
DN 32	56.0	36.0	1024162
DN 40	62.0	41.0	1029508

P_AC_0263_1_SW1 PVDF with collar

P_AC_0264_SW1 1.4571/1.4404 with collar

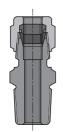
Flange Mountings

Flange connection in line with DIN 2566 for ProMinent® valve sizes.

3							
Material		G/DN	Pressure rating	b	Ø LK	d2	Order no.
			PN	mm	mm	mm	
PVDF	_	G 3/4 - DN 10	PN 16	12.4	60	14	1036274
PVDF	_	G 1 - DN 15	PN 16	13.0	65	14	1036275
PVDF	_	G 1 1/4 - DN 20	PN 16	15.0	75	14	1036276
PVDF	_	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036277
PVDF	_	G 2 - DN 32	PN 16	18.0	100	18	1036278
PVDF	-	G 2 1/4 - DN 40	PN 16	20.0	100	18	1039037
1.4404	_	G 3/4 - DN 15	PN 40	12.0	65	14	803946
1.4404	_	G 1 - DN 15	PN 40	12.0	65	14	803940
1.4404	_	G 1 1/4 - DN 20	PN 40	15.0	75	14	803941
1.4404	_	G 1 1/2 - DN 25	PN 40	15.0	85	14	803942
1.4404	_	G 2 - DN 32	PN 40	18.0	100	18	1036283
1.4404	_	G 2 1/4 - DN 40	PN 40	20.0	110	18	803943
1.4404	_	G 2 3/4 - DN 50	PN 40	25.0	125	18	1020453
1.4404	_	G 2 1/2 - DN 65	PN 40	20.0	145	18	1010700
PVDF	with collar*	G 3/4 - DN 10	PN 16	12.5	60	14	1036279
PVDF	with collar*	G 1 - DN 15	PN 16	13.5	65	14	1036280
PVDF	with collar*	G 1 1/2 - DN 25	PN 16	16.0	85	14	1036281
PVDF	with collar*	G 2 - DN 32	PN 16	18.0	100	18	1036282
1.4571	with collar*	G 3/4 - DN 10 (DIN 2637)	PN 100	20.0	70	14	1006005
1.4571	with collar*	G 1 - DN 15 (DIN 2637)	PN 40	16.0	65	14	1006006
1.4404	with collar*	G 1 1/2 - DN 25 (DIN 1092-1)	PN 40	18.0	85	14	1041796
1.4404	with collar*	G 2 - DN 32 (DIN 1092-1)	PN 40	18.0	100	18	1041797

^{*} Use flange mountings with a collar for pumps Sigma/ 1, Sigma/ 2 with DN 15 connector and Sigma/ 3 pumps with DN 25 connector. Sigma/ 3-DN25 1" EN 1092-11.4404 part no: 1041796

Further material versions and details available on request.



d D pk_2_048

Flat Seals for Threaded Flange to DIN 2566

Material	G/DN	D	d	Order no.
		mm	mm	
PTFE	G 3/4 - DN 15	52	12	483938
PTFE	G 1 - DN 15	52	17	483924
PTFE	G 1 1/4 - DN 20	62	22	483925
PTFE	G 1 1/2 - DN 25	72	27	483926
PTFE	G 2 - DN 32	83	33	1007541
PTFE	G 2 1/4 - DN 40	92	40	483928
PTFE	G 2 3/4 - DN 50	108	50	483929
PTFE	G 3 - DN 65	130	60	1020466
FKM	G 3/4 - DN 15	52	12	483939
FKM	G 1 - DN 15	52	17	483942
FKM	G 1 1/4 - DN 20	62	22	483943
FKM	G 1 1/2 - DN 25	72	27	483944
FKM	G 1 1/2 - DN 32	83	33	1007542
FKM	G 2 1/4 - DN 40	92	40	483946
FKM	G 2 3/4 - DN 50	108	50	483947
FKM	G 3 - DN 65	130	60	1020467

Flange mountings as DIN 2629. To order for Meta HK and Makro TZ HK plunger metering pumps.

pk_1_028

pk_1_013

Straight Male Adapter Stainless Steel

Swagelock system, stainless steel SS 316 (1.4401) for connection of pipework to liquid end and valves with internal thread and for SB version.

	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
12 mm - ISO 7 R 3/8	359520
16 mm - ISO 7 R 3/8	359521

Soft PVC Suction Line

For metering pumps and accessories. We recommend that only original tubing is used so that the mechanical connection of the compression fitting and the pressure rating and chemical resistance are ensured.

Supply with food-use certification is available upon request.

	Material	oØ x iØ		Permissible pressure	Order no.
		mm		bar	
٠	PVC flexible	19 x 15	for DN 10	0.5*	037020
	Flexible PVC	22 x 18	for DN 15	0.5*	037022

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Caution:

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

* Permissible operating pressure at 20 °C, chemical resistance and proper connection assumed.

pk_1_060

Soft PVC Suction and Discharge Line with Woven Fabric Core

Supply with food-use certification is available upon request.

Material	oØ x iØ		Permissible pressure	Order no.
	mm		bar	
Soft PVC with woven inner layer	24 x 16	for DN 10	16*	037040
Soft PVC with woven inner layer	27 x 19	for DN 15	16*	037041
Soft PVC with woven inner layer	34 x 25	for DN 20	12*	037043
Soft PVC with woven inner layer	40 x 30	for DN 25	10*	1000527
Soft PVC with woven inner layer	52 x 40	for DN 32	7*	1005508

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Caution:

The resistance of soft PVC hoses is not identical to that of hard PVC. Please observe the resistance for soft PVC as well as the cleaning instructions when using the equipment for food applications (see homepage).

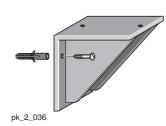
For socket welded and PVC cemented rigid PP and PVDF pipe, pipes and fittings with a pressure rating of PN 16 or PN 10 bar are to be used.

Stainless Steel Pipes

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Stainless steel pipe 1.4435	Sold in metres	6 x 5	175*	015738
	Sold in metres	6 x 4	185*	015739
	Sold in metres	8 x 7	160*	015740
	Sold in metres	12 x 10	200*	015743

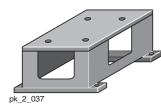
^{*} Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Hose Cutting Kit


Hose Cutting Set for Plastic Pipes up to a Diameter of 25 mm. Manufacturer: Gedore.

	Order no.
Hose Cutting Kit	1038571

1.8.10


Metering Pump Wall Mounting Bracket

PP Wall Bracket

PP wall mounting, holds pump parallel to the wall, includes fixings. Measurements: L x W x H, 230 x 220 x 220 mm

		Order no.	
Wall mounting bracket	for Vario, Sigma and Meta	1001906	

PP Foot Bracket

For mounting metering pump, includes fixings. Material PP.

Measurements: L x W x H 250 x 160 x 150 mm

	Order no.
Foot bracket	809910

1.8.11

Hoses, Pipes

Hoses and Pipework for Low-Pressure Metering Pumps

For metering pumps and accessories.

We recommend that only original lines are used so that the mechanical connection of the compression fitting and the pressure rating and chemical resistance are ensured.

Soft PVC Suction Line

pk_1_013

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
PVC flexible	5	6 x 4	0.5*	1004520
	5	8 x 5	0.5*	1004521
	5	12 x 9	0.5*	1004522
	10	6 x 4	0.5*	1004523
	10	8 x 5	0.5*	1004524
	10	12 x 9	0.5*	1004525
	25	6 x 4	0.5*	1004526
	25	8 x 5	0.5*	1004527
	25	12 x 9	0.5*	1004528
	50	6 x 4	0.5*	1004529
	50	8 x 5	0.5*	1004530
	50	12 x 9	0.5*	1004531
	Sold in metres	19 x 15	0.5*	037020

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Soft PVC Suction and Discharge Line with Woven Fabric Core

οk	1	060

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Fabric-reinforced flexible PVC	5	10 x 4	18*	1004533
	5	12 x 6	17*	1004538
	10	10 x 4	18*	1004534
	10	12 x 6	17*	1004539
	25	10 x 4	18*	1004535
	25	12 x 6	17*	1004540
	50	10 x 4	18*	1004536
	50	12 x 6	17*	1004541
	Sold in metres	24 x 16	10*	037040
	Sold in metres	27 x 19	10*	037041

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly.

Soft PVC Suction and Metering Line with Woven Inner Layer Approved for Food Use

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Soft PVC with woven inner layer approved for food use	5	10 x 4	10*	1037556
	5	12 x 6	10*	1037561
	10	10 x 4	10*	1037557
	10	12 x 6	10*	1037562
	25	10 x 4	10*	1037558
	25	12 x 6	10*	1037563
	50	10 x 4	10*	1037559
	50	12 x 6	10*	1037564

^{*} Permissible operating pressure at 20 °C as per DIN EN ISO 7751, 1/4 of burst pressure, subject to chemical resistance and correct connection

With socket-welded and PVC-bonded rigid PP and PVDF piping, pipes and fittings of pressure rating PN 16 or PN 10 bar should be used.

Please note:

PVC soft hoses do not offer the same resistance as rigid PVC. Always note the resistance of soft PVC and the cleaning instructions for use in food applications (see website).

PE Suction and Discharge Line

Material	Length m	oØ x iØ mm	Permissible pressure bar	Order no.
Polyethylene	5	6 x 4	10*	1004492
	5	8 x 5	10*	1004493
	5	12 x 9	7*	1004504
	10	6 x 4	10*	1004505
	10	8 x 5	10*	1004506
	10	12 x 9	7*	1004507
	25	6 x 4	10*	1004508
	25	8 x 5	10*	1004509
	25	12 x 9	7*	1004510
	50	6 x 4	10*	1004511
	50	8 x 5	10*	1004512
	50	12 x 9	7*	1004513

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

PTFE Suction and Discharge Lines

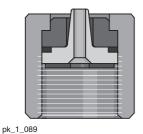
Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
PTFE	Sold in metres	1.75 x 1.15	12*	037414
	Sold in metres	3.2 x 2.4	8*	037415
	Sold in metres	6 x 3	20*	1021353
	Sold in metres	6 x 4	14*	037426
	Sold in metres	8 x 4	25*	1033166
	Sold in metres	8 x 5	16*	037427
	Sold in metres	12 x 9	10*	037428
	Meterage, max. 30 m	19 x 16	6*	037430

Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly

Stainless Steel Pipes

Material	Length	oØ x iØ	Permissible pressure	Order no.
	m	mm	bar	
Stainless steel pipe 1.4435	Sold in metres	1.58 x 0.9	400*	1020774
	Sold in metres	3.175 x 1.5	400*	1020775
	Sold in metres	6 x 5	175*	015738
	Sold in metres	6 x 4	185*	015739
	Sold in metres	8 x 7	160*	015740
	Sold in metres	12 x 10	200*	015743

^{*} Admissible operating pressure at 20 °C in accordance with DIN EN ISO 7751, subject to chemical resistance and correct assembly


Hose Cutting Kit

Hose Cutting Set for Plastic Pipes up to a Diameter of 25 mm. Manufacturer: Gedore.

	Order no.
Hose Cutting Kit	1038571

1.8.12

Connection Kits for Low-Pressure Metering Pumps

Connection kit for fitting hoses of different sizes to the suction and pressure connector of the dosing head of alpha, Beta, gamma, delta®, Pneumados b and accessories, consisting of hose nozzle, clamp ring, union nut and seal for one or two connectors.

Single Connector Kit

Material		oØ x iØ	Order no.	
		mm		
PP/EPDM (PPE)	for hose	6 x 4	817160	
PP/EPDM (PPE)	for hose	8 x 5	817161	
PP/EPDM (PPE)	for hose	12 x 9	817162	
PP/EPDM (PPE)	for hose	10 x 4	1002587	
PP/EPDM (PPE)	for hose	12 x 6	817163	
PP/FKM (PPB)	for hose	6 x 4	817173	
PP/FKM (PPB)	for hose	8 x 5	817174	
PP/FKM (PPB)	for hose	12 x 9	817175	
PP/FKM (PPB)	for hose	10 x 4	1002588	
PP/FKM (PPB)	for hose	12 x 6	817176	
PVC/EPDM (PCE)	for hose	6 x 4	791161	
PVC/EPDM (PCE)	for hose	8 x 5	792058	
PVC/EPDM (PCE)	for hose	12 x 9	790577	
PVC/EPDM (PCE)	for hose	10 x 4	1002590	
PVC/EPDM (PCE)	for hose	12 x 6	792062	
PVC/FKM (PCB)	for hose	6 x 4	817065	
PVC/FKM (PCB)	for hose	8 x 5	817066	
PVC/FKM (PCB)	for hose	12 x 9	817067	
PVC/FKM (PCB)	for hose	10 x 4	1002589	
PVC/FKM (PCB)	for hose	12 x 6	817068	
PVDF (PVT)	for hose	6 x 3	1024583	
PVDF (PVT)	for hose	6 x 4	1024619	
PVDF (PVT)	for hose	8 x 4	1033148	
PVDF (PVT)	for hose	8 x 5	1024620	
PVDF (PVT)	for hose	12 x 9	1024618	
PVDF (PVT)	for hose	10 x 4	1024585	
PVDF (PVT)	for hose	12 x 6	1024617	
PTFE (TTT)	for hose	6 x 4	817205	
PTFE (TTT)	for hose	8 x 5	817206	
PTFE (TTT)	for hose	12 x 9	817207	
PTFE (TTT)	for hose	12 x 6	817208	

Double Connector Kit

Material		oØ x iØ mm	Order no.
PP/EPDM (PPE)	for hose	6 x 4	817150
PP/EPDM (PPE)	for hose	8 x 5	817153
PP/EPDM (PPE)	for hose	12 x 9	817151
PP/EPDM (PPE)	for hose	12 x 6	817152
PP/FKM (PPB)	for hose	6 x 4	817166
PP/FKM (PPB)	for hose	8 x 5	817167
PP/FKM (PPB)	for hose	12 x 9	817168
PP/FKM (PPB)	for hose	12 x 6	817169
PVC/EPDM (PCE)	for hose	6 x 4	817060
PVC/EPDM (PCE)	for hose	8 x 5	817048
PVC/EPDM (PCE)	for hose	12 x 9	817049
PVC/EPDM (PCE)	for hose	12 x 6	791040
PVC/FKM (PCB)	for hose	6 x 4	817050
PVC/FKM (PCB)	for hose	8 x 5	817053
PVC/FKM (PCB)	for hose	12 x 9	817051
PVC/FKM (PCB)	for hose	12 x 6	817052
PVDF (PVT)	for hose	6 x 4	1023246
PVDF (PVT)	for hose	8 x 5	1023247
PVDF (PVT)	for hose	12 x 9	1023248
PVDF (PVT)	for hose	12 x 6	1024586
PTFE (TTT)	for hose	6 x 4	817201
PTFE (TTT)	for hose	8 x 5	817204
PTFE (TTT)	for hose	12 x 9	817202
PTFE (TTT)	for hose	12 x 6	817203

Support Insert Made of Stainless Steel No. 1.4571

For connection of PE or PTFE pipe to stainless steel connectors using Swagelock and Serto systems.

	oØ x iØ	Order no.
	mm	
for hose	6 x 4	359365
for hose	8 x 5	359366
for hose	12 x 9	359368
for hose	8 x 6	359362
for hose	12 x 10	359363

pk_1_090

1.9 Electrical Accessories

1.9.1

Speed Controllers

Frequency Converters for Speed Control

Frequency converters are installed in the IP 55 protective enclosure and are suitable for the motor output ratings listed below.

Integrated control unit with various functions optimally matched to ProMinent metering pumps: Selectable external/internal control, internal/external reset, temperature monitoring and control via PTC sensor, separate motor fan control as well as evaluation of diaphragm rupture monitoring.

Internal control: via potentiometer

External control: 0/4-20 mA corresponding to 0-50 (60) Hz output frequency

Frequency converters can be used in the range of -10 °C to 40 °C.

Ma	o185_SW x. motor put	For pump type	Voltage supply	Voltage supply, external fan	Control range	Order no.
	0.37	Sigma/1, Sigma/2, Meta, Hydro/2, MF1a, DR15	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030684
	0.75	Sigma/ 3, Hydro/ 3, MF2a	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030685
	1.50	Makro TZ, MF2a, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030686
	2.20	Makro TZ, MF3a, DR150	1 ph 200 – 240 V	230 V 50/60 Hz	1:10	1030687
	4.00	MF3a, MF4a	3 ph 380 – 500 V	3 ph 380 V	1:5	1030688

Dimensions and weight

Order no.	В	Н	С	Weight
	mm	mm	mm	kg
1030684	210	240	163	6.3
1030685	210	240	163	6.3
1030686	215	297	192	8.8
1030687	230	340	222	10.7
1030688	230	340	222	10.7

Variable speed motors with integrated frequency converter with IP 55 protection

Externally controllable with 0/4-20 mA (factory setting 4-20 mA)

Voltage supply: 1 ph 230 V, 50/60 Hz (0.37-1.1 kW) Voltage supply: 3 ph 400 V, 50/60 Hz (1.5-3 kW)

The following functions are integrated in the terminal box cover:

- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode.

Max. motor output kW	For pump	Control range	Flange Ø mm	Order no.
0.18	Sigma/ 1	1:20	120	1020229
0.37	Sigma/ 2	1:20	105	1008568
0.37	Hydro/ 2, Meta	1:20	160	1008569
0.55	Sigma/ 3	1:20	160	1008570
0.75	Hydro/ 3	1:20	160	1008571
1.10	Makro TZ (TZMB)	1:20	160	1008572
1.50	Makro TZ	1:20	160	1008573
2.20	Makro TZ	1:20	200	1008574
3.00	Makro/ 5	1:20	250	1027482

Motor data sheets can be requested for more information.

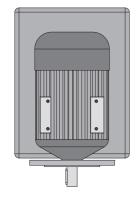
Special motors or special motor flanges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

ok_2_103

Variable speed motor with integrated frequency converter

Motor Driven Metering Pumps


1.9 Electrical Accessories

Operating unit for setting control parameters

	Order no.
With sub-D connector (old)	1020585
With Western connector (new)	1029493

Note:

Version suitable for use in ambient temperatures up to 55 °C available on request.

P_AC_0211_SW

Explosion-protected compact drive with integrated frequency converter Protection class II 2G Eexde II C T4

Voltage supply: 400 V, 50/60 Hz Mains feed: 3 ph + neutral + earth

Model: IM B5

Inputs: 2 x analogue 0/4...20 mA

4 x digital (includes frequency input 0...100 kHz)

Outputs: 2 x analogue 4...20 mA 4 x digital 0/+20 V, 10 mA

1 x frequency output 0...10 kHz, 0/18...24 V, max. 5 mA

Terminal strip connectors: ON/OFF

Self-locking RESET

Winding and temperature monitoring by PTC resistor with integral evaluation.

External control circuit: 230 V with internal fuse.

Note:

Delivery on request

Max. motor output kW	For pump	Control range	Flange Ø mm
0.55	Hydro/ 2, Sigma/ 3, Orlita MF	1:10	80
0.75	Hydro/ 3, Orlita MF	1:10	80
1.50	Makro TZ, Orlita MF	1:10	200
2.20	Makro TZ, Orlita MF	1:10	200
4.00	Makro/ 5, Orlita MF	1:10	250

Pumps with compact drive are always delivered on a frame.

Motor data sheets can be requested for more information.

Special motors or special motor flanges and other control ranges are available on request.

Motors less than 0.75 kW and motors designed for speed-controllable operation are not subject to the IEC2 standard in compliance with the Ecodesign Directive 2005/32/EC.

1.9 **Electrical Accessories**

1.9.2

General Electrical Accessories

Universal signal cable

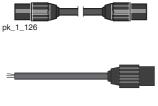
For control of the metering pump via potential-free contact, analogue standard signal and for potential-free ON/ OFF switching - switch-on function.

For Vario, S1Ca, S2Ca and S3Ca with 5-pin round plug made of plastic and 5-wire cable with open end.

	Cable length	Order no.
	m	
Universal cable	2	1001300
Universal cable	5	1001301
Universal cable	10	1001302

Reed cable with 3-pin round plug, PE

For Sigma metering pumps with 3-pin round plugs and a 3-core cable with an open end for level control. Suitable for Suction lance for motor-driven metering pumps* → 1-57


Cable length Order no. m Reed cable with 3-pin round plug, PE 2 1030334 3 1030335 1030336

P_AC_0243_SW

Level sensor cable for connection of a universal suction lance and a motor-driven metering pump

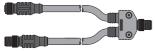
For connection of the level switch of the universal suction lance for Sigma metering pumps or the higherlevel control system (e.g. PLS).

Suitable for PPE universal suction lance for motor-driven metering pumps → 1-67

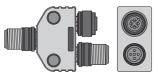
P_AC_0243_SW

	Cable length	Fig.	Order no.
	m		
Round plug coupling for M12 3-pin round plug	2	pk_1_126	1040962
Round plug coupling for M12 3-pin round plug	5	pk_1_126	1040963
Round plug coupling for M12 open end	1.1	P_AC_0243_SW	1009873
Round plug coupling for M12 open end	5	P_AC_0243_SW	1022537

Extension cable, 3-core


For 2-stage level switches, with round plug and round plug coupling.

	Cable length	Fig.	Order no.	
	m			
Extension cable, 3-core	3	pk_1_126	1005559	


1.9 Electrical Accessories

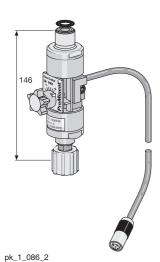
Profibus adaptor, IP 65 protection

From eurofast 5-pin M12 x 1, length approx. 500 mm.

P AC 0245 SW

P_AC_0230_SW_1

P_AC_0239_SW


			Fig.	Order no.
	Y-adapter 2 x M12 x 1 male/female	M12 x 1 male	P_AC_0245_SW	1040956
	PROFIBUS® termination assembly, comprising a Y-plug and terminating resistance	M12	_	1040955
	PROFIBUS® Y-adapter	M 12 x 1	P_AC_0230_SW	1036621
	PROFIBUS® termination resistor, plug-in	M 12 x 1	P_AC_0239_SW	1036622
	PROFIBUS® termination resistor,			

USB adaptor

To connect a laptop to gamma and Sigma series metering pumps.

The USB adapter can be used to transfer timer programmes created using ProTime software to the pump. You will find the ProTime software on our home page.

	Order no.
USB Adapter	1021544

Flow Control adjustable flow monitor

Suitable for product range Sigma/1/2/3 in material versions PVT and SST. Complete with connector cable for assembly directly on the dosing head.

For monitoring the individual strokes based on the floating body principle. The adjustment screw is used to match the partial flow flowing past the float to the set stroke volume so that an alarm is emitted if the level falls significantly below the required level. The permitted number of incompletely performed strokes can be selected between 1-150 on the Sigma Control (S1Cb/S2Cb/S3Cb), ensuring optimum adaptation to process requirements.

Materials

Flow meter: **PVDF** Float: PTFE-coated Seals: FKM/EPDM

Flow Control	Seal material	For pump	Order no.	
Flow Control DN 10	EPDM	Sigma/ 1	1021168	
Flow Control DN 10	FKM	Sigma/ 1	1021169	
Flow Control DN 15	EPDM	Sigma/ 1/ 2	1021170	
Flow Control DN 15	FKM	Sigma/ 1/ 2	1021171	
Flow Control DN 25	EPDM	Sigma/ 2/ 3	1021164	
Flow Control DN 25	FKM	Sigma/ 2/ 3	1021165	
Flow Control DN 32	EPDM	Sigma/ 3	1021166	
Flow Control DN 32	FKM	Sigma/ 3	1021167	

1.9 **Electrical Accessories**

Flow Meter DulcoFlow® for Product Range Sigma/ 1

Your reliable control unit: unobtrusively measures, monitors and detects faults.

For the measurement of pulsating volumetric flows within the range of 0.03 ml/stroke to 10 ml/

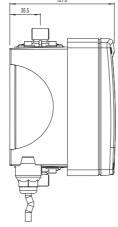
The flow meter DulcoFlow® reliably measures pulsating flows in the range above 0.03 ml/stroke based on the ultrasound measuring principle. The flow meter achieves maximum chemical resistance, as all wetted parts are made of PVDF and PTFE.

The device works on the ultrasound measuring principle. It was developed specifically for measuring small pulsating volumetric flows. It is installed around 30 cm downstream of the metering pump, so that there is still sufficient pulsation in the flow. All liquids that conduct ultrasound waves can be measured.

Your benefits

- Maximum chemical resistance by the use of PVDF and PTFE
- No electrical conductivity of the medium is needed
- Measurement above stroke volumes of approx. 30 µl
- Detection of gas bubbles in the feed chemical
- No bottlenecks in the measuring tube. Media with small undissolved particles or with increased viscosity can be measured
- A 0/4 -20 mA current output and a frequency output are available for remote transmission of the measured values.
- Use as a single stroke monitor with feedback to the pump. This ensures that the metering stroke is performed within an adjustable lower and upper limit
- Summation of the metering volume measured with stroke counter
- Intuitive user guidance and simple programming

Technical details


- 2 LEDs for status display and stroke feedback
- 2-line graphic display
- 0/4 20 mA standard signal and 0 10 kHz frequency output for remote transmission of the measured value
- Compact, chemically-resistant plastic housing
- Measuring accuracy ±2% if the device has been calibrated to the chemical to be measured. Max. operating pressure 16 bar.

Field of application

- Measurement of the chemical consumption, for example in surface treatment
- Guaranteed metering, for example in the paper industry
- Measured value transmission and pump control by the central control system
- Measurement of aggressive chemicals
 - Not suitable for liquids, which have minimal acoustic conductivity, e.g. sodium hydroxide (NaOH) with a concentration of greater than around 20%

We recommend first testing the measurability with emulsions and suspensions

Dimensional drawing of DulcoFlow®

P_DFI_0002_SW1

1.9 Electrical Accessories

Technical Data

TypeType 08Measuring tubePVDFMax. operating pressure16 bar

Smallest measurable stroke volume Approx. 0.05 ml/stroke pulsing

Contact output with individual Open collector, 1 contact per stroke stroke detection

Frequency output Open collector, up to 10 kHz at maximum flow

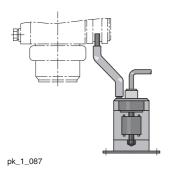
(parametrisable)

Analogue output Parametrisable, max. load 400 Ω

for series Beta® 1604 – 0420, gamma/ X 1604 – 0424,

delta® 1020 - 0450, Sigma/ 1

Identity code ordering system for DulcoFlow® ultrasound flow meter


DFMa		(for pump series)										
	80		eta® 1604 - 0420, gamma/ X 1604 - 0424, delta® 1020 - 0450, Sigma/ 1									
			Sealant material									
		E										
	V FKM											
		Т	PTFE									
			Hydra	ulic cor								
			1	6/4 mn								
			2	8/5 mn	-							
			3	12/9 m								
						nection, cable						
				Α		30 V AC, 2 m European						
				В		30 V AC, 2 m Swiss						
				С		30 V AC, 2 m Australian						
				D		230 V AC, 2 m USA						
					Signal	output						
					0	No output						
					1	Current output						
					2	Contact output						
					3	Current output and contact output						
	4 Current output for delta® with control module											
		Version 0 With ProMinent® logo										
						Accessories						
						0 Without accessories						

Matching adapter, hydraulically mechanical accessories

- Foot Valves see page \rightarrow 1-47
- Injection Valves see page → 1-49
- Connector Parts, Seals, Hoses see page → 1-66
- $\,\blacksquare\,\,$ Suction Lances/Suction Assemblies see page \rightarrow 1-55
- Dosierüberwachung Mengenmessung see page → 1-88

Electrical Accessories 1.9

Diaphragm rupture indicator

Triggers alarm and switches off metering pump in the event of diaphragm rupture. Consists of float switch, PVC/PE, acrylic tank, connectors and connecting hose. Potential-free NO contact, max. contact voltage 60 V AC, 300 mA, 18 W.

	For pump	Order no.
Diaphragm rupture indicator	Meta, Makro TZ	803640
Diaphragm rupture indicator	Makro/ 5	1019528

pk_1_088

Siren

HUW 55, 230 V, 50 - 60 Hz,

165 x 60 x 65, 85 phon, indoor.

(e.g. in association with fault indicating relay or relay controller)

	Order no.
HUW 55 Horn	705002

Warning light

Wall mounted, red, 230 V, 50 - 60 Hz.

(e.g. in association with fault indicating relay, pulse generator or relay controller)

	Order no.
Indicator lamp, red	914780

1.10.1

Custom Accessories

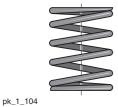
FKM metering diaphragm

As standard diaphragm but made of FKM, and without PTFE coating. Designed specifically for crystallising chemicals, e.g. silicate. Max. operating pressure 6 bar.

For pump type	Order no.
Vario 12017, 12026, 12042	811308
Vario 10025, 09039, 07063	811309
Vario 06047, 05075, 04120	811310
Sigma/ 1 (old diaphragm) 12017, 12035, 10050	1010281
Sigma/ 1 (old diaphragm) 10022, 10044, 07065	1010284
Sigma/ 1 (old diaphragm) 07042, 04084, 04120	1010287
Sigma/ 2 (old diaphragm) 16050, 16090, 16130	1018953
Sigma/ 2 (old diaphragm) 07120, 07220, 04350	1018984
Sigma/ 3 (old diaphragm) 120145, 120190, 120270, 120330	1006564
Sigma/ 3 (old diaphragm) 070410, 070580, 040830, 041030	1006566

Additional custom diaphragms for other pump types are available on request.

FKM = Fluorine Rubber



pk_1_103

Liquid end valve springs

With approx. 0.05-0.1 bar priming pressure for spring loading of the valve balls in the liquid end. Recommended to improve the valve function and to increase metering accuracy, in particular for viscous media above 50 m Pas.

	Order no.
1.4571 valve spring 0.05 bar for 1/4" connector on Meta/Makro TZ HK	469461
1.4571 valve spring 0.05 bar for 3/8" connector on Makro TZ HK	469462
Hastelloy C valve spring 0.1 bar DN 10	469114
Hastelloy C valve spring 0.1 bar DN 15	469107
Hastelloy C valve spring 0.1 bar DN 20	469451
Hastelloy C valve spring 0.1 bar DN 25	469452

Injection valve springs

With approximately 0.5-1 bar priming pressure for increased metering reproducibility and prevention of suction and siphoning effect.

	Order no.
Hastelloy C valve spring 0.5 bar DN 10	469115
Hastelloy C valve spring 1 bar DN 10	469119
Hastelloy C valve spring 0.5 bar DN 15	469108
Hastelloy C valve spring 1 bar DN 15	469116
Hastelloy C valve spring 0.5 bar DN 20	469409
Hastelloy C valve spring 1 bar DN 20	469135
Hastelloy C valve spring 0.5 bar DN 25	469414
Hastelloy C valve spring 1 bar DN 25	469136
Hastelloy C valve spring 0.5 bar DN 40	469104
Hastelloy C valve spring 1 bar DN 40	469137

Injection valve spring with FEP coating

	Order no.
Hastelloy C/FEP valve spring 0.5 bar for DN 10	818515
Hastelloy C/FEP valve spring 0.5 bar for DN 15	818516
Hastelloy C/PVDF valve spring 0.5 bar for DN 10	818517
Hastelloy C/PVDF valve spring 0.5 bar for DN 25	818518
Hastelloy C/PVDF valve spring 0.5 bar for DN 40	818519

1

pk_1_102

pk_2_058

Custom valve balls

Ball valves and accessories for on site retrofitting of metering pumps when the standard material is unsuitable. Supplied loose only.

	Order no.
PTFE diameter 11.0 for DN 10 valve	404260
PTFE diameter 16.0 for DN 15 valve*	404259
PTFE diameter 20.0 for DN 20 valve	404256
PTFE diameter 25.0 for DN 25 valve	404257
PTFE diameter 38.1 for DN 40 valve	404261
Ceramic diameter 11.1 for DN 10 valve	404277
Ceramic diameter 16.0 for DN 15 valve*	404275
Ceramic diameter 20.0 for DN 20 valve	404273
Ceramic diameter 25.0 for DN 25 valve	404274
Ceramic diameter 38.1 for DN 40 valve	404278

^{*} Not suitable for PVT valve material.

M20 x 1.5 P 3/4" 9 40

Adapter from DN10-3/4" (DN15-1", Sigma) to M20x1.5

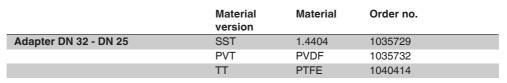
Fits 12 x 9 hose connector set

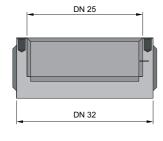
	Material	Order no.	
Adapter from DN 10, 3/4" fem. to M20 x 1.5 male	PVDF	1017406	
Adapter from DN 15, 1" fem. to M20 x 1.5 male	PVDF	1028530	

DN15 adapter, 1" (Sigma) to M20 x 1.5

Fits 12 x 9 tube connector kit.

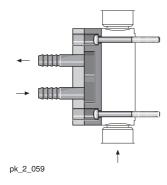
	Material	Order no.		
Adapter from DN 15, 1" fem. to M20 x 1.5 male	PVDF	1028530		


Adapter (complete) from M20 x 1.5 to G3/4 DN10

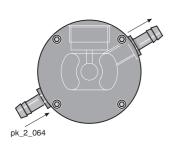

Consisting of an adapter and a PTFE, EPDM/P, FPM-A flat seal and PTFE shaped composite seal. Suitable for connection of the flow meter DulcoFlow® to a Sigma/ 1.

	Material	Order no.
Adapter (complete) from M20 x 1.5 to G3/4 DN10	PVT	1028409

Valve adapter DN 32 - DN 25


Suitable for the liquid end of the Sigma/ 3 metering pump FM 1000 up to 600 l/h.

P_AC_0244_SW


Cooling/heating equipment, diaphragm metering pumps

For stainless steel liquid end. For assembly, including retrofitting, onto the liquid end. 10 mm diameter connectors for hot/cold chemicals with locking screws. Dimensions in mm. Outer diameter A, pitch circle diameter LK.

Temperature -10 ... 80 °C

For pump	ØA	Ø LK	Order no.
	mm	mm	
Sigma/ 1 (old version) FM 50/65	-	_	1025500
Sigma/ 1 (old version) FM 120	-	_	1025501
Sigma/ 2 (old version) FM 130	-	-	1002178
Sigma/ 2 (old version) FM 350	_	-	1002179
Sigma/ 3 (old version) FM 330	_	_	1006455
Sigma/ 3 (old version) FM 1000	_	_	1006456
Hydro/ 2/3 FMH 025/060	-	-	1024743
Hydro/ 3 FMH 150	-	_	1040112
Hydro/ 4 FMH 400	-	-	1047700
Meta, Makro TZ FM 130, FM 260	145	127	803751
Meta, Makro TZ FM 530	180	164	803752
Makro TZ FM 1500/2100	248	219	806005
Makro/ 5 FM 4000	-	-	1020683
Makro TZ FMH 70/20	_	_	1041263
Makro/ 5 FMH 85/50	-	-	1041261
Makro/ 5 FMH 60/50	-	_	1041260
Makro/ 5 FMH 130/50	-	-	1041262

^{*} Adapted to the design with the new multi-layer safety diaphragm.

Cooling/heating equipment, plunger metering pumps

The cooling/heating equipment is installed in the liquid end. 10 mm diameter connectors. Cannot be retrofitted.

For pump	Order no.
Sigma HK - 08 S	1040459
Meta/Sigma HK - 12,5 S	803551
Meta/Sigma HK - 25 S	803552
Meta/Sigma HK - 50 S	803553
Makro TZ FK 30	1036645
Makro TZ FK 50	1036655
Makro TZ FK 85	1024665

Cooling/heating equipment for Makro TZ HK on request.

000000

pk_1_119

- grey black
- brown
- blue white
- Mains voltage Relay flow control
- Connecting for sensor

Thermal metering monitor

The flow monitor consists of a sensor and monitor electronics. It operates on the principle of heat transference from the water flow and can be used with all solenoid and motor-driven metering pumps at or above a continuous metering quantity of 0.5 l/h.

Monitor electronics

The fault indicating relay is triggered when normally flowing liquid ceases to flow (switching power 250 V/ 4 A). At this point the relay opens for 3-20 sec (adjustable). The switch status is indicated by LED. Continuous flow volume adjustment.

Enclosure rating Enclosure IP 40 Terminal box IP 00

Permissible ambient temperature 0...60 °C

	Electrical connection	Order no.
Evaluation electronics	230 V, 50/60 Hz	792886

Tastkopf C

Single-section ceramic sensor

Outer thread

Operating temperature 5 °C to 60 °C medium temperature, not suitable for alkaline solutions

Fixed input lead. Cable length 2 m. Lead length

Max. lead length 100 m **Enclosure rating** IP 67 Pressure resistance 7 bar Adjustment range 0 - 60 cm/s

Order no. Probe C 1022339

Tastkopf S

Single-cell, metal-clad sensor, stainless steel material no. 1.4571

Outer thread

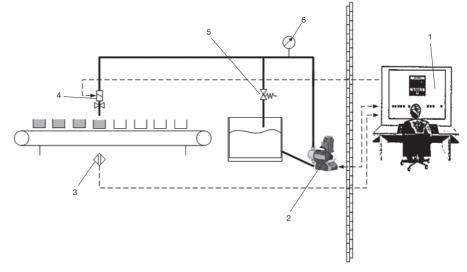
-25 °C to 80 °C medium temperature Operating temperature Lead length Fixed input lead. Cable length 2 m.

Max. lead length 100 m **Enclosure rating IP 67** Pressure resistance 30 bar

Adjustment range 1 cm/s to 5 m/s

Production Co.	Order no.
Probe S	792888

Required connector parts (T-piece, bypass) should be ordered separately.



1.11 Application Examples

Metering of Highly Viscous Substances

Motor-driven pumps Product:

Metered medium: Viscous filler Sector: **Electronics** Application: Part filling

- Process control system (master)
- Metering pump, Sigma (field unit)
- Proximity switch Solenoid valve
- Overflow valve
- Pressure gauge

pk_2_113

Tasks and requirements

- Metering of a viscous filler in templates
- Metering accuracy ±2%
- Varying filling volumes

Operating conditions

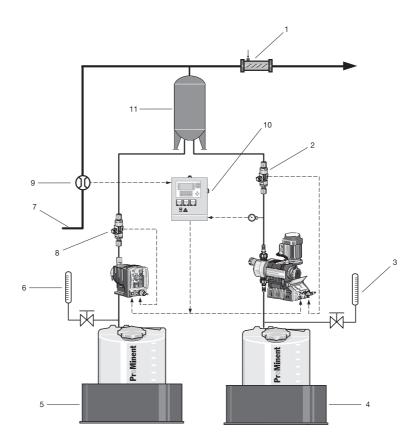
- The templates pass the metering point on a conveyor in "stop and go" operation.
- The pump is started by a proximity switch at the conveyor (external contact control).

Notes on application

- The start always begins with a pressure stroke, i.e. controlled stop of the diaphragm at the end of the
- When varying the filling volume, a stroke length as large as possible should be chosen this improves
- Short and stable suction and metering lines, no pulsation damper thus reduction of the flexible (moved)
- If possible work with feed so that the suction lines are always filled with liquid even during longer idle
- A solenoid valve is required for filling to prevent dripping of the residual quantities.

- Sigma Control metering pump with PROFIBUS® connection
- Overflow valve, solenoid valve

- Monitoring of the metering pump and setting of the metering amount (number of strokes) by PCS in the control centre
- Less electrical installation work required
- Integration into the complete process flow through PROFIBUS®
- Safe and precise metering thanks to overflow and solenoid valves



1.11 Application Examples

1.11.2 **Mixing Two Reagents**

Product: Motor-driven pumps, solenoid pumps Metered medium: Chlorine activator, oxidant (NaOCI) Sector: Process industry, power stations

Application: Biocide handling in cooling water systems

- Static mixer
- Flow Control Feed measuring unit
- NaOCI solution Chlorine activator
- Feed measuring unit
- Flow Control
- Flow rate measurement Control cabinet
- Reaction chamber

pk 2 114 1

Tasks and requirements

- Biocide treatment of cooling water systems used in combination with chlorination processes.
- Chlorine activator is mixed with NaOCI to produce hyprobromide acid (HOBr) as an active biocide compound. HOBr is particularly effective at pH values from 7.5 to 9.0.
- A level of 0.5 g/m³ of active HOBr over a period of 1 hour is to be secured twice a day for the purpose of disinfecting the cooling water.

Operating conditions

- Biologically polluted water
- Automatic activation of metering pumps

Application information

- The mixing ratio of chlorine activator and NaOCI (12.5 % solution) is 10 I to 26 52 I. The exact composition is to be determined by means of tests (on site).
- Metering pump with timer function activates the second pump and is therefore responsible for batch
- Motor pump is protected against overload by a pressure gauge with pressure switch. The pressure gauge is connected to the control system.
- The control system monitors the installation and switches off the flow meter in response to corresponding signals (fault signalling).

Notor Driven Metering Pumps

1.11 Application Examples

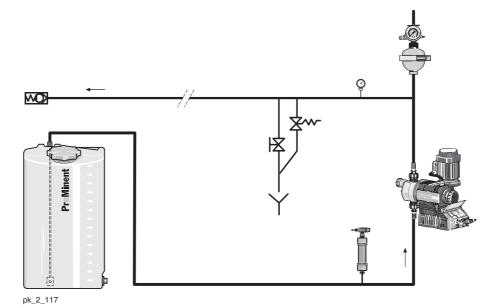
Solution

- gamma/ L metering pump with timer function (possibly with external timer)
- Sigma/ 1 metering pump, control version
- Feed monitoring, flow control
- Feed measuring facility
- Pressure gauge with pressure switch

Benefits

- Efficient disinfection in water containing alkali and ammoniac
- Inexpensive raw material basis that is also stable and non-corrosive
- High degree of reliability ensured by flow monitoring
- Simple and effective facility for optimising the chemical composition in connection with feed measuring device

Motor Drive


1.11 Application Examples

1.11.3 Safe and Reliable Chemical Metering with Reduced Pulsation

Product: Metering pump, accessories

Metered medium: High-viscosity chemicals

Application: Use of pulsation damper (PD)

Tasks and requirements

- For process-technical reasons, a low-pulsation metering flow is desired.
- Mass accelerating forces during metering, caused by the oscillating movement of the displacement body in connection with the piping geometry need to be reduced.
- Cavitation-free process flow

Operating conditions/environment

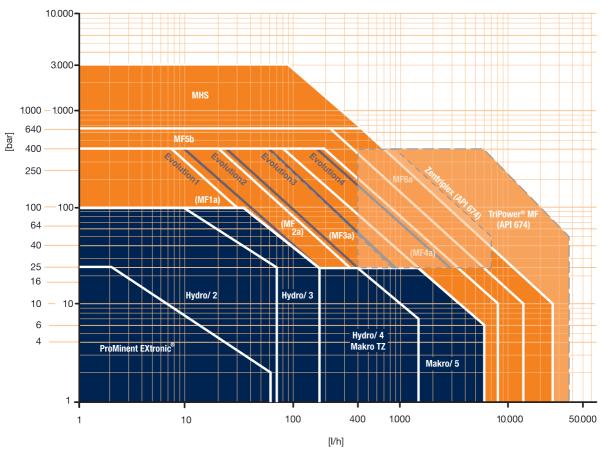
- Long suction/discharge lines
- Line cross-section with small dimensions
- Metering of high-viscosity, inert media

Notes on application

- Pressure surges increase with increasing metering line length and smaller diameter; these may result in impermissible pressure peaks.
- For longer pipes, as well as for higher viscosity media, the need for a PD using a pipe calculation programme is to be evaluated.
- In an oscillating motor-driven metering pump, the maximum flow rate is approx. 3 times greater than the mean, in a solenoid pump approx. 5 times as great. This is to be considered when designing pipings without PD.
- PD should be preloaded with compressed air or nitrogen at approx. 60-80% of the operating pressure to be expected.

Solution

- ProMinent[®] metering pumps
- Pressure-relief/overflow valves
- Pulsation dampers


Benefits

- Safe installation preventing damage to pumps and pipes
- Precise metering by avoiding of cavitation
- Compensation of delivery flow fluctuations

2.0 Overview of Process Metering Pumps

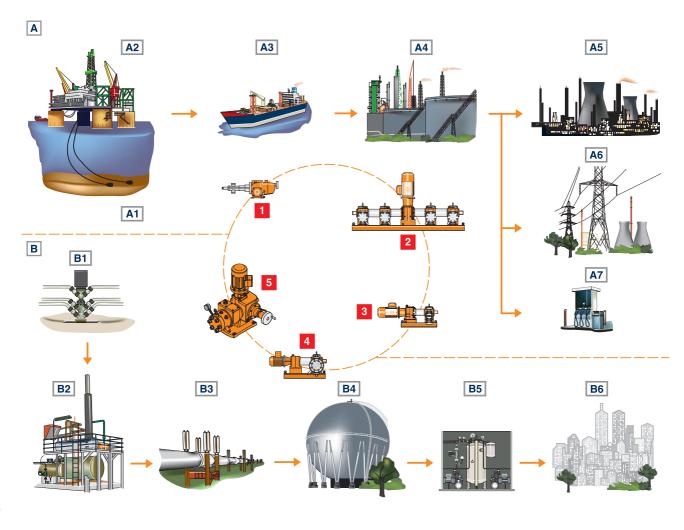
2.0.1 Selection Guide

S43

Overview of Process Metering Pumps

Туре		EXBb	TZMb	M5Ma	HP2a	HP3a	HP4a	М5На	SBKa/ SCKa	MTKa	TZKa	М5Ка
Stroke length	mm	1.25	0 - 10	0 - 20	15	15	20	0 - 50	0 - 15	0 - 15	0 - 20	0 - 50
Connecting rod force	N	2,000	8,000	10,000	2,000	4,200	5,800	10,000	1,700	2,500	8,000	10,000
Туре		EF1a	EF2a	EF3a	EF4a	S 18	S 35	S 80	S 180	S 600	S 1400	Rb 15
Stroke length	mm	0 - 15	0 - 15	0 - 25	0 - 40	0 - 15	0 - 20	0 - 20	0 - 40	0 - 40	0 - 60	0 - 15
Connecting rod force	N	2,300	5,400	8,000	15,700	1,750	3,500	14,000	18,000	40,000	60,000	1,800
Туре		Rb 150	Zentrip	lex Trip	ower							
Stroke length	mm	0 - 32	40	60								
Connecting rod force	N	15,000	18,000	80,0	000							

Pr


2.0 Overview of Process Metering Pumps

2.0.2

Installation Applications

- A Oil industry
- A1 Well
- A2 Platform
- A3 Transportation (tanker, pipeline)
- A4 Refinery
- A5 Petrochemical
- A6 Industry/power plants
- A7 Filling stations

- B Gas industry
- B1 Well
- B2 Gas treatment/gas drying
- B3 Transportation (tanker, pipeline)
- B4 Gas storage tank
- B5 Local distribution/odorization
- B6 Industry/power plants

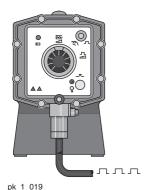
- 1 Valveless piston-type dosing pump DR
- 2 Multiplexed dosing pumps
- 3 Piston-type dosing pump PS
- 4 Hydraulic diaphragm-driven dosing pump Mh (metal diaphragm)
- 5 Hydraulic diaphragm-driven dosing pump Orlita® Evolution (PTFE diaphragm)

pk_3_07

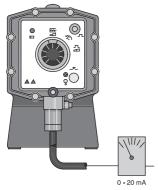
Diaphragm Metering Pump ProMinent EXtronic®

Diaphragm Metering Pump ProMinent EXtronic®

Precise metering with explosion protection


Capacity range of single pump: 0.19 - 60 l/h, 10 - 1.5 bar

The diaphragm metering pump Extronic® is perfectly suited for the sensitive use of liquid media in facilities with an explosive gas atmosphere as well as for mines at risk of firedamp, as it is approved in compliance with the EC EX Regulation 94/9/EC (ATEX).


pk_1_020 Control type "Internal"

Stroke length adjustment 1:10, stroke rate adjustment 1:25, total adjustment range 1:250.

Control type "External Contact"

Stroke length adjustment 1:10, Stroke frequency control 0 - 100% dependant upon external switch contacts. *)

pk 1 018

Control type "Analogue'

Stroke length adjustment 1:10, Stroke frequency control 0-100 % proportional to analogue signal 0/4-20 mA. *)

*) The electrical cables for mains connection, Field of application contact or analogue control are already connected to the pump. Observe all instructions concerning connecting and activating electrical systems.

The ATEX-compliant diaphragm metering pump Extronic® (EXBb) is tested and approved in line with the harmonised EC provisions of EN 50014/50018 for "compression-resistant enclosures" and thus offers the maximum level of protection. The short-stroke solenoid and the complete pump control are integrated in the pump housing so that, together with the explosion-proof power end, there is IP 65 protection against contact and humidity as per DIN 40050 even when the front cover is open.

Optimum adaptation for use in areas at risk from explosion

- ATEX-compliant in line with EExd IIC T6 and EExd I/IIC T6
- Excellent operating and functional reliability by a microprocessor controller, which compensates for fluctuations of mains voltage and automatically switches from 50 to 60 Hz operation
- Broad range of applications with an operating voltage of 500 V, 230 V and 115 V
- Ease of integration into processes thanks to the range of control types (internal, external contact, analogue)
- Also suitable for gaseous media, thanks to self-bleeding head

Technical details

- Stroke length: 1.25 mm, Rod force: 2,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by scaled rotary dial
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- DEVELOPAN® metering diaphragm with PTFE coating with diaphragm rupture control
- Wetted materials: Polypropylene, PVC, PTFE with carbon, clear acrylic, stainless steel, special designs available on request
- Degree of protection: IP 65 (also with open front cover)
- Short stroke solenoid drive and complete pump control integrated in the pump housing
- "Internal", "External contact" and "Analogue" control inputs available, the latter two also available as intrinsically safe and approved to EN 50020
- EXBb G for use in areas at risk from gases and vapours, degree of protection EEx [i,a] d IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC (includes IIA and IIB)
- T6 Temperature class permissible for gases and vapours with ignition temperature > 85 °C
- EXBb M for use in mines at risk from firedamp, degree of protection EEx [i,a] d I/IIC T6

This means:

- EEx Equipment complies with European standards
- [i,a] Control input is intrinsically safe when 2 independent errors occur
- d Type of ignition protection, compression-resistant enclosure
- IC Explosion group I for mines at risk from firedamp
- IIC Explosion group II for all areas at risk from explosion with the exception of mining, sub-group IIC
- T6 Temperature class permissible for gases and vapours with ignition temperature > 85 °C

- Oil, gas and petrochemicals
- Mining
- For use in areas at risk of gases and vapours
- Use in mines at risk from firedamp

2.1 Diaphragm Metering Pump ProMinent EXtronic®

Technical Data

Type EXBb	Delivery rate at max. back pressure			Delivery rate at medium back pressure			Number of strokes	oØ x iØ	Suction lift	Shipping weight PP,NP,TT-SS
	bar	l/h	ml/ stroke	bar	l/h	ml/ stroke	Strokes/ min	mm	mWC	kg
EXBb										
1000	10.0	0.19	0.03	5.0	0.27	0.04	120	6 x 4	1.5	12
2501	25.0	1.14	0.15	20.0	1.10	0.17	120	6 x 4	5.0	-
1601	16.0	1.00	0.15	8.0	1.30	0.18	120	6 x 4	5.0	12
1201	12.0	1.70	0.23	6.0	2.00	0.28	120	6 x 4	5.0	12
0803	8.0	3.70	0.51	4.0	3.90	0.54	120	6 x 4	3.0	12
1002	10.0	2.30	0.31	5.0	2.70	0.38	120	8 x 5	5.0	12
0308	3.0	8.60	1.20	1.5	10.30	1.43	120	8 x 5	5.0	12
2502	25.0	2.00	0.28	20.0	2.20	0.31	120	8 x 5	5.0	13
1006	10.0	6.00	0.83	5.0	7.20	1.00	120	8 x 5	5.0	13
0613	6.0	13.10	1.82	3.0	14.90	2.07	120	8 x 5	5.5	13
0417	3.5	17.40	2.42	2.0	17.90	2.49	120	12 x 9	4.5	13
2505	25.0	4.20	0.64	20.0	4.80	0.73	110	8 x 5	5.0	16
1310	13.0	10.50	1.59	6.0	11.90	1.80	110	8 x 5	5.0	16
0814	8.0	14.00	2.12	4.0	15.40	2.33	110	12 x 9	5.0	16
0430	3.5	27.00	4.09	2.0	29.50	4.47	110	DN 10	5.0	16
0260	1.5	60.00	9.09	-	-	-	110	DN 15	1.5	16
EXtronic® me	etering pun	nps for hig	ıh viscosi	ty media						
1002	10.0	2.30	0.31	5.0	2.70	0.38	120	DN 10	1.8	-
1006	10.0	6.00	0.83	5.0	7.20	1.00	120	DN 10	2.0	_
1310	10.0	10.50	1.59	5.0	11.90	1.80	110	DN 15	2.8	-
0814	8.0	14.00	2.12	4.0	15.40	2.33	110	DN 15	2.0	_
EXtronic® me	etering pun	nps with s	elf-bleedi	ng liquid e	nd					
1601	16.0	0.66	0.09	_	-	-	120	6 x 4	1.8	_
1201	12.0	1.00	0.14	_	-	-	120	6 x 4	2.0	-
0803	8.0	2.40	0.33	_	-	_	120	6 x 4	2.8	_
1002	10.0	1.80	0.25	-	-	-	120	6 x 4	2.0	-

^{*} Shipping weight for EXBb M version... additional 14 kg

Materials in Contact With the Medium

	Liquid end	Suction/discharge connector	Seals	Balls (connection 6-12 mm)	Balls (connection DN 10 and DN 15)
PP1	Polypropylene	Polypropylene	EPDM	Ceramic	Borosilicate glass
PP4*	Polypropylene	Polypropylene	EPDM	-	Ceramic
NP1	Plexiglass	PVC	FKM A	Ceramic	Borosilicate glass
NP3	Plexiglass	PVC	FKM B	Ceramic	-
NS3**	Plexiglass	PVC	FKM B	Ceramic	-
PS3**	PVC	PVC	FKM B	Ceramic	-
TT1	PTFE with carbon	PTFE with carbon	PTFE	Ceramic	Ceramic
SS	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4404	PTFE	Ceramic	Stainless steel mat. no. 1.4404

^{*} PP4 with valve springs made of Hastelloy C

^{**} The data given here represent guaranteed minimum values, achieved with medium water at room temperature.

NS3 and PS3 with valve springs made of Hastelloy C, valve insert made of PVDF FKM = fluorine rubber

2.1 Diaphragm Metering Pump ProMinent EXtronic®

2.1.2 Identity Code Ordering System for EXBb

EXBb	Encl	osure i	rating										
	G	Gas-E		of									
	M	Fire and explosion protection, permitted liquid end material: stainless steel and PTFE											
		Capac											
			bar I/h										
		1000	10										
		2501 1601	25 16	1.14 1.00	(only a	ivaliable	in 55 a	10 58)					
		1201	12	1.70									
		0803	8	3.70									
		1002	10	2.30									
		0308	3	8.60									
		2502	25	2.00	(availa	ıble in S	S and S	3 only)					
		1006	10	6.00									
		0613	6	13.10									
		0417	4	17.40									
		2505	25	4.20		vailable		,					
		1310	13	10.50	(only a	ivailable	in NP,	PP4, SS and	(SB)				
		0814	8	14.00									
		0430 0260	4	27.00 60.00									
		0200		d end r	mataria								
			PP1		opylene		PDM O	ina					
			PP4					•	s with EPDM O-ring and Hastelloy C valve springs (Types 1002, 1006, 1310 and 0814 only)				
			NP1	Acrylic	with FI	KM A O	ring*						
			NP3	Acrylic	with Fl	KM B O	ring*						
			NS3	,			-	_	(Types 1601, 1201, 0803 and 1002 only)				
			PS3				-	bleeding (T	ypes 1601, 1201, 0803 and 1002 only)				
			TT1			h carbon, PTFE seal steel, no. 1.4404, with PTFE seal							
			SS1			,	,						
		SS2 Stainless steel with 1/4" NPT internal thread, PTFE seal											
			SB1 Stainless steel with ISO 7 Rp 1/4 internal thread, ISO 7 Rp 1/2 on type 0260, PTFE seal (recommended for flammable materials) SSM as SS1, with diaphragm rupture indicator Type 2501 only										
			SBM		as SB1, with diaphragm rupture indicator Type 2501 only Valve springs 0 No springs								
				Valve									
				1	That I tall opinings, the right of								
		Electrical connection											
				A 230 V, 50/60 Hz B 115 V, 50/60 Hz E 500 V, 50/60 Hz									
							ol type						
						0		stroke rate	adjustment via potentiometer				
						1	Extern	l contact					
						2		ue 0-20 mA					
						3		ue 4-20 mA	Administration of the Control of the				
						4 5			trinsically safe [i,a] intrinsically safe [i,a]				
						6			intrinsically safe [i,a]				
						7			olts ON/OFF				
						8			olts ON/OFF, intrinsically safe [i,a]				
								l Versions					
							0		ometer (control type 0, 7 and 8 only)				
							1		l auxiliary key for maximum stroke rate (control type 1-6 only)				
							2	With manua	I auxiliary frequency changer key for maximum stroke rate (control type 1-6 only)				
								Approved/					
									- Europe, German, 100 V - 500 V				
									- Europe, English, 100 V - 500 V USA, English, 115 V				
									- Canada, English, 115 V, 230 V				
								307					

^{*} FKM = Fluorine rubber

2.1 Diaphragm Metering Pump ProMinent EXtronic®

Design of connectors

With PP, NP, NS, PS and TT	6, 8 and 12 mm	Hose nozzle with clamping ring
With stainless steel SS1/SSM	6, 8 and 12 mm	Swagelok system threaded connector
With stainless steel SS2	6, 8 and 12 mm	Internal thread 1/4" NPT
With stainless steel SS1/SBM	6, 8 and 12 mm	Internal thread ISO 7 Rp 1/4

With PP and NP	DN 10 and DN 15	Hose nozzle d 16 - DN 10 and d 20 - DN 15
With TT	DN 10 and DN 15	Welding sleeve d 16 - DN 10 and d 20 - DN 15 (PVDF)
With stainless steel SS1	DN 10 and DN 15	Insert with internal thread R 3/80 and R 1/2"
With stainless steel SB1	DN 10 and DN 15	Internal thread ISO 7 Rp 1/4 and 1/2

Repeatability of metering ±2% when performed in line with the information in the operating instructions.

For type 1601 with self-bleeding dosing head $\pm 5\%$. Permissible ambient temperature: -20 °C to +45 °C.

Electrical connection: 500 V ±6%, 50/60 Hz

230 V ±10%, 50/60 Hz 115 V ±10%, 50/60 Hz

Degree of protection: IP 65, insulation class F

Average power consumption at max. stroke rate (W)/peak current during metering stroke (A) at 230 V, $50/60 \, \text{Hz}$

EXBb	Type 1000, 2501, 1601, 1201, 0803, 1002, 0308	13 W/0.8 A	at 120 strokes/min.
EXBb	Type 2502, 1006, 0613, 0417	35 W/1.8 A	at 120 strokes/min.
EXBb	Type 2505, 1310, 1014, 0430, 0260	45 W/2.2 A	at 110 strokes/min.

Scope of delivery: Metering pump with mains cable (5 m) and connector parts for hose/pipe connection as per the table.

2.1.3 Spare Parts

Spare Parts Kits for Diaphragm Metering Pump ProMinent EXtronic®

Scope of delivery with material versions PP and NP:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- Sealing set, complete
- 1 Connector kit

Scope of delivery with material versions NS3 and PS3:

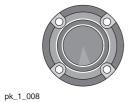
- 1 Diaphragm
- 1 Suction valve, complete
- 1 Connector component, complete
- 1 Discharge valve, complete
- Bleed valve, complete
- 1 Connector kit

Scope of delivery with material version TT-PTFE:

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 2 Ball seat discs
- 1 Sealing set, complete
- 1 Connector kit

Scope of delivery with SS stainless steel material version:

- 1 Diaphragm
- 4 Valve balls
- 4 Ball seat discs
- 1 Sealing set, complete
- 1 Connector kit


2.1 Diaphragm Metering Pump ProMinent EXtronic®

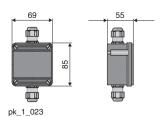
Pump type	Materials in contact with the medium		Order no.
EXBb 1000	PP1		740357
	NP3		740354
	TT		910776
	SS/SK		910777
EXBb 2501	SBM		1020281
	SSM		1020282
EXBb 1601	PP1		740361
	NP3		740358
	NS3/PS3		792033
	π		910778
	SS/SK		910779
EXBb 1201	PP1		740380
	NP3		740362
	NS3/PS3		792034
	π		910780
	SS/SK		910781
EXBb 0803	PP1		740384
	NP3		740381
	NS3/PS3		792035
	TT		910782
	SS		910783
EXBb 1002/2502	PP1		740388
	NP3		740385
	NS3/PS3		792036
	тт		910784
	SS		910785
	HV/PP 4	Type 1002	910743
EXBb 0308/1006/2505	PP1		740497
	NP1		740498
	ТТ		910957
	SS		910959
	HV/PP4	Type 1006	910939
EXBb 0613/1310	PP1	, , , , , , , , , , , , , , , , , , ,	740504
	NP1		740505
	ТТ		910969
	SS		910971
	HV/PP4	Type 1310	910941
EXBb 0417/0814	PP1		740501
	NP1		740502
	TT		910977
	SS		910979
	HV/PP4	Type 0814	910943
EXBb 0430-DN 10	PP1		740507
	NP1		740508
	TT		910993
	SS		910995

Replacement parts set as DN 10 with one-way ball valves.

Spare Diaphragms for Diaphragm Metering Pump ProMinent EXtronic®

 $ProMinent @ \ DEVELOPAN @ \ EPDM \ metering \ diaphragms \ with \ woven \ inner \ layer, integrally \ vulcanised \ steel core \ and \ PTFE \ Teflon \ coating \ on \ the \ side \ in \ contact \ with \ the \ feed \ chemical.$

For pump type	Description	Order no.
1000	31.0 x 6.0	811452
2501	35.0 x 11.5	1000246
1601	48.0 x 9.5	811453
1201	48.0 x 12.5	811454
0803	48.0 x 18.5	811455
1002 2502	60.0 v 17.0	811456



Diaphragm Metering Pump ProMinent EXtronic®

For pump type	Description	Order no.
0308, 2505, 1006	60.0 x 28.0	811457
1310, 0613	76.0 x 37.0	811458
0814, 0417	76.0 x 45.0	811459
0430, 0230	127.5 x 63.0	811460
0260	127.5 x 91.0	811461

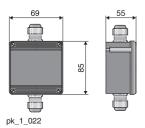
2.1.4

Ex-Proof Ancillary Equipment

Plastic terminal box: Type I

IP 66, EEx e II T 6, max. 380 V for mains connection, e.g. of ProMinent EXtronic® in areas at risk of explosion.

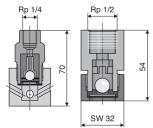
|--|


1 input, 1 output for power supply cable. 2 terminals + PE and 2 M 20- 1000071 12 screw glands

pk_1_021

Plastic terminal box: Type II

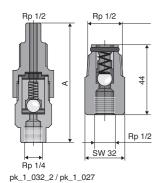
IP 6, EEx e II T 6, max. 380 V. As type I, but with additional connector for control cable (e.g. for contact water meter or DULCOMETER® controller).


	Order no.
2 inputs (mains and controller cable), 2 outputs	1000072
2 terminals + PE, 1 partition, 2 terminals and	
2 M 20-12 screw glands and	
2 M 16-0.8 screw glands	

Plastic terminal box: EExi Type I

IP 66, EEx ia II T 6 for intrinsically safe control cable

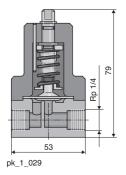
	Order no.
1 input, 1 output for control cable, 2 terminals and 2 M 16-0.8, blue screw glands	1000073


pk_1_30 / pk_1_031

Stainless steel foot valve 1.4404 "SB"

With filter and ball check valve, designed for use with flammable materials. Materials: 1.4404/1.4401/PTFE/ceramic

	Order no.
Connector ISO 7 Rp 1/4 SB version for ProMinent EXtronic®	809301
Connector ISO 7 Rp 1/2 SB version for ProMinent EXtronic®	924561


2.1 Diaphragm Metering Pump ProMinent EXtronic®

Stainless steel 1.4404 "SB" metering valve

Spring-loaded ball check valve designed for use with flammable materials. Materials: 1.4404/1.4401/ Hastelloy C/PTFE/ceramic

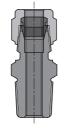
	Order no.
Connector ISO 7 Rp 1/4 - R 1/2, priming pressure approx. 0.5 bar	809302
Connector ISO 7 Rp 1/2 - R 1/2, priming pressure approx. 0.5 bar	924560

Adjustable "SB" back pressure valve

	Order no.
Operating range approx. 1-10 bar, closed version, designed for use with flammable materials.	924555

To generate a constant back pressure for accurate metering with a free outlet. Can also be used as an overflow valve.

PTFE metering pipe


Carbon-filled, surface resistance $< 10^7 \Omega$

Material	Length	Connection size Permissible o Ø x i Ø pressure		Order no.	
	m	mm	bar		
Carbon-filled PTFE	By the metre	6 x 4	12*	1024831	
Carbon-filled PTFE	By the metre	8 x 5	16*	1024830	
Carbon-filled PTFE	By the metre	12 x 9	9*	1024832	

^{*} Permissible operating pressure at 20 °C in accordance with EN ISO 7751, ¼ of the rupture pressure, assuming chemical resistance and correct connection.

Additional ancillary equipment, i.e. foot valves, metering valves and back pressure valves in the usual material combinations, identical to gamma ancillary equipment and/or for connector DN 15 Vario ancillary equipment.

(Hydraulic/Mechanical Accessories see p. → 1-45)

Stainless steel straight threaded connectors

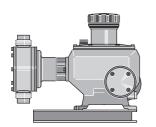
Swagelok system in stainless steel SS 316 (1.4401) for connection of pipework to liquid ends and valves with internal thread and for SB version.

Normal threaded seal compounds required.

	Order no.
6 mm - ISO 7 R 1/4	359526
8 mm - ISO 7 R 1/4	359527
12 mm - ISO 7 R 1/4	359528
16 mm - ISO 7 R 1/2	359529

pk_1_028

2.2.1


Diaphragm Metering Pump Makro TZ

Capacity range of single pump: 260 - 2,100 l/h, 12 - 4 bar

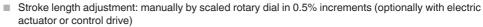
Greater safety in continuous operation through mechanically deflected multi-layer safety diaphragm.

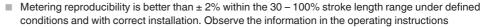
The modular construction of the diaphragm metering pump Makro TZ with adjustable eccentric drive mechanism and mechanically deflected multi-layer safety diaphragm makes it wonderfully adaptable to the capacity requirements of the respective application.

The diaphragm metering pump Makro TZ (TZMb) has an adjustable eccentric drive mechanism and, together with the Makro TZ plunger metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Excellent process safety and reliability:

- Patented multi-layer safety diaphragm with integral diaphragm rupture warning system
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation




- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump
- 5 different gear ratios are available
- Customised designs are available on request

Technical details

- Patented multi-layer safety diaphragm with optical diaphragm rupture display (optionally with electrical diaphragm rupture warning system / warning via a contact)
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571. Special materials are available on request
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

Makro TZ externally mounted nump

pk 2 014 Makro TZ double head pump

pk 2 012 Makro TZ TZMb

pk_2_013

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

Technical Data

Type TZMb	With 1500 rpm motor at 50 Hz			Wi	th 1800 i	rpm mot	tor at 60 Hz	Suction lift	Connection, suction/ discharge side	Shipping weight PP,NP,TT-SS	
	Deliv	ery rate back p	at max. ressure	Max. stroke rate		ry rate a back pre		Max. stroke rate			
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	mWC	G-DN	kg
120260	12	260	60	72	174	312	82	86	4.0	1 1/2–25	46/54
120340	12	340	60	96	174	408	108	115	4.0	1 1/2–25	46/54
120430	12	430	60	120	174	516	136	144	4.0	1 1/2–25	46/54
120510	12	510	60	144	174	622	164	173	4.0	1 1/2–25	46/54
120650	12	640	60	180	174	-	-	-	4.0	1 1/2–25	46/54
070430	7	430	99	72	100	516	136	86	3.5	2–32	50/64
070570	7	570	99	96	100	684	181	115	3.5	2–32	50/64
070720	7	720	99	120	100	864	228	144	3.5	2–32	50/64
070860	7	860	99	144	100	1,032	273	173	3.5	2–32	50/64
071070	7	1,070	99	180	100	-	_	_	3.5	2–32	50/64
040840	4	840	194	72	58	1,008	266	86	3.0	2 1/4–40	56/80
041100	4	1,100	194	96	58	1,320	349	115	3.0	2 1/4–40	56/80
041400	4	1,400	194	120	58	1,680	444	144	3.0	2 1/4–40	56/80
041670	4	1,670	194	144	58	2,004	529	173	3.0	2 1/4–40	56/80
042100	4	2,100	194	180	58	-	-	-	3.0	2 1/4–40	56/80

Stroke length 10 mm

Plastic material design: max. 10 bar back pressure

The permissible priming pressure on the suction side is approximately 50% of the max. permitted back pressure

Materials in Contact With the Medium

		DN 25 ball valves				DN 32/DN 40 plate valves **		
	Liquid end	Suction/ discharge connector	Seals	Valve balls	Valve seats	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVDF	PTFE	Borosilicate glass	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PVDF	PTFE	Ceramic	PTFE	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4404	Stainless steel mat. no. 1.4581	PTFE	Stainless steel mat. no. 1.4401	PTFE	PTFE	Stainless steel 1.4404/Hast. C	PTFE

Multi-layer safety diaphragms with PTFE coating.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.2.2

Identity Code Ordering System for TZMb

Makro TZMb mechanically deflected diaphragm metering pump

TZMb	Drive	tvpe											
LIVID	H	Main d	rive										
	A	Add-or											
1	D			in drive									
	В												
	ט		add-on drive										
		Type* 120260)		070430	1		04084	n				
		120200			070430			04110					
		120430			070720			04140					
		120510			070860			04167					
		120650			071070			04210					
		000		end ma				0.2.0					
			PC	PVC	attitui								
			PP		pylene								
			SS		ss steel								
			TT	PTFE -	- 25% c	arbon							
				Sealin	g mate	rial							
				Т	PTFE								
					Displa	cemen	t body						
					1	Multi-l	ayer safe	ety diap	hragm w	ith ruptu	re indic	ator	
						Liquid	l end ve	rsion					
						0		ve sprin	_				
						1		alve spr					
									nection				
							0		ard conn				
							1		nion nut				
							2		on nut a union nu				
							3		union nu on nut a				
							4			na mser	ι		
								Version 0		oMinent	® logo		
								2		Minent®	-		
								A				with fra	me, simplex
								В					me, duplex
								С					me, triplex
								M	Modifie	ed			•
									Electri	cal pov	er sup	ply	
									S	3 ph. 2	30/400	V 50/60	Hz (WBS)
									R				4-pole, 230/400 V
									V (0)				with integr. frequency converter
									Z		control		
									L				(Exe, Exd)
									P				(Exe, Exd)
									V (2)				with integr. frequency converter (Exd)
									4 7		or, with		
									8		tor, with		
									0		tor, with		nounted drive
									U		or, exte		iounted dilve
													rd) ISO class F
										1			TEX-T3
										2			TEX-T4
										A		power e	
			1							1		senso	
											0		oke sensor
											1	With s	troke sensor (Namur)
												Stroke	e length adjustment
												0	Stroke length adjustment, manual
												1	230 V stroke actuator
												2	115 V stroke actuator
												3	230 V 0-20 mA stroke controller
												4	230 V 4-20 mA stroke controller
												5	115 V 0-20 mA stroke controller
												6	115 V 4-20 mA stroke controller
													(servo motors for Ex zones on request)
													Application 0 Standard
													0 Standard

^{*} Digits 1 + 2=back pressure [bar]; digits 3 - 6=capacity [l/h]

^{**} Material version PCT/PPT/TTT max. 10 bar

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	1.1 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.75 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.2.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

- 1 Metering diaphragm (multi-layer safety diaphragm)
- Suction valve complete
- 1 Discharge valve complete
- 2 Valve balls (DN 32/DN 40 with plate and spring)
- 1 Complete sealing set (O-rings or flat seals, valve seats, valve seat bushings)

Spare Parts Kits for Diaphragm Metering Pump Makro TZ (TZMb)

Identity Code: 120260, 120340, 120430, 120510, 120650

Liquid end	Materials in contact with the medium		Order no.
FM 650 - DN 25	PCT, PPT, TTT		1025164
	SST		1022896
	SST	without valves cpl.	1022895

Identity Code: 070430, 070570, 070720, 070860, 071070

Liquid end	Materials in contact with the medium		Order no.
FM 1100 - DN 32	PCT, PPT, TTT		1025167
	SST		1022917
	SST	without valves cpl.	1022916

Identity Code: 040840, 041100, 041400, 041670, 042100

Liquid end	Materials in contact with the medium		Order no.
FM 2100 - DN 40	PCT, PPT, TTT		1025169
	SST		1022930
	SST	without valves cpl.	1022929

Multi-Layer Metering Diaphragm for TZMb

ProMinent multi-layer safety diaphragm with diaphragm rupture warning system and PTFE Teflon coating on the wetted side.

Pump type	Order no.
Identity code: 120260, 120340, 120430, 120510, 120650; Makro TZ FM 650	1022887
Identity code: 070430, 070570, 070720, 070860, 071070; Makro TZ FM 1100	1022900
Identity code: 040840, 041100, 041400, 041670, 042100; Makro TZ FM 2100	1022921

Spare Parts Kits for Diaphragm Metering Pump Makro TZ (TZMa)

Identity Code: 120190, 120254, 120317, 120381

Materials in contact with the medium		Order no.
PP		910452
Р		910455
Т		910458
S	without valves cpl.	910475
S		910461
	with the medium PP P T S	PP P T S without valves cpl.

Identity Code: 060397, 060529, 060661, 060793

Liquid end	Materials in contact with the medium		Order no.
FM 530 - DN 25	PP		910453
	Р		910456
	Т		910459
	S	without valves cpl.	910476
	S		910462

Identity Code: $030750,\,031000,\,031250,\,031500,\,031875,\,031050$, $031395,\,031740,\,032100,\,032500$

Liquid end	Materials in contact with the medium		Order no.
FM 1500/2100 - DN 40	PP		1001573
	Р		1001574
	Т		1001575
	S	without valves cpl.	1001577
	S		1001576

2.2 Diaphragm Metering Pump Makro TZ

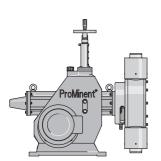
PTFE Metering Diaphragms for TZMa

ProMinent® DEVELOPAN® metering diaphragms with a generously-sized steel core vulcanised into fibre reinforced EPDM, with a PTFE Teflon coating on the process-wetted side.

Pump type	Order no.
Identity code: 100190, 120190, 100254, 100317, 120317, 100381, 120381; Makro TZ FM 260	811471
Identity code: 060397, 060529, 060661, 060793; Makro TZ FM 530	811472
Identity code: 030750, 031000, 031250, 031500, 031050, 031395, 031740, 032100, 032500; Makro TZ FM 1500/FM 2100	811473

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.


Diaphragm Metering Pump Makro/ 5

2.3.1

Diaphragm Metering Pump Makro/ 5

It is not possible to do more with a mechanically deflected diaphragm Capacity range of single pump: 1,540 - 4,000 l/h, 4 bar

The diaphragm metering pump Makro/ 5 is used to meter reactants and catalysts in the chemical industry. Thanks to its modular construction, it can adapt outstandingly to the actual requirements of each application.

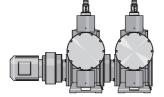
pk 2 099 Makro/ 5 M5Ma

pk_2_093

The diaphragm metering pump Makro/ 5 (M5Ma) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,000 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

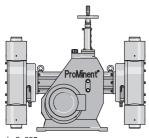
Your benefits

Process reliability:


■ Metering reproducibility is better than ± 2% within the 30-100% stroke length range under defined conditions and with correct installation.

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request


Technical details

- Stroke length: 0-20 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 2% within the 30 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- Wetted materials: Polypropylene, PVC, PTFE+25% carbon, stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- For reasons of safety, provide suitable overload protection mechanisms in all mechanically deflected diaphragm metering pumps

pk 2 098 Makro/ 5 externally mounted pump

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_095 Makro/ 5 double head pump

Diaphragm Metering Pump Makro/5

Technical Data

Type M5Ma	V	With 150	0 rpm mo	otor at 50 Hz	,	With 1800 rpm motor at 60 Hz				Connection, suction/ discharge side	Shipping weight
	Delivery rate at max. Max. back pressure stroke rate		Delivery rate at max. back pressure s			Max. stroke rate					
	bar	l/h	ml/	Strokes/	psi	l/h	gph	Strokes/	mWC	G-DN	kg
			stroke	min			(US)	min			
041540	4	1,540	427	60	58	1,822	481	71	3.0	2 3/4–50	320
041900	4	1,900	427	75	58	2,254	595	89	3.0	2 3/4-50	320
042600	4	2,600	427	103	58	3,104	820	123	3.0	2 3/4-50	320
043400	4	3,400	427	133	58	4,064	1,074	159	3.0	2 3/4-50	320
044000	4	4,000	427	156	58	-	-	-	3.0	2 3/4–50	320

Stainless steel version: Shipping weight 340 kg

The permissible admission pressure on the intake side is approx. 50% of the maximum permissible back pressure.

Materials in Contact With the Medium

DN 50 plate valves

	Liquid end	Suction/discharge valve	Seals	Valve plates/valve spring	Valve seats
PPT	Polypropylene	Polypropylene	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
PCT	PVC	PVC	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Ceramic/ Hast. C + CTFE**	PTFE
SST	Stainless steel mat. no. 1.4571/1.4404	Stainless steel mat. no. 1.4571/1.4404	PTFE	Stainless steel mat. no. 1.4404/Hast. C	PTFE

DEVELOPAN® metering diaphragm with PTFE coating.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

The valve spring is coated with CTFE (similar to PTFE) Special versions on request.

2.3.2

Identity Code Ordering System M5Ma

M5Ma motor-driven mechanically deflected diaphragm metering pump

М5Ма	Drive	tvne												
IVIJIVIA	H	Main dri	Ve											
1	D	Double		ve										
	A	Add-on		••										
	В	Double :		drivo										
	٦		uuu-UII (311VC										
		Type 041540	I											
		041900												
		041900 042600 043400 044000												
			Liquid	end ma	aterial									
			PC	PVC	atoriai									
			PP	Polypro	ropylene									
			SS	Stainle	ss steel									
				PTFE -	+ 25% carbon									
				Sealin	ling material									
				Т	PTFE									
					Displa	cement	body							
					Т			gm with	PTFE c	oating				
							end ve							
						1				st. C; 0.	1 bar			
								ulic cor						
							0		ard conn					
							1			and inse				
							2			ind inser ut and in				
										ınd inser				
							4			iliu ilisei	ı			
								Versio 0		oMinent	® logo	no fram		
								1		t ProMin				
								A					ime, simplex	
										with ProMinent® logo, with frame, duplex				
								С					ime, triplex	
								D					ime, quadruplex	
								M	Modifie	ed				
									Electri	ical pov	er sup	ply		
									S	3 ph. 2	30/400	V 50/60	Hz (WBS)	
									R	Variabl	e speed	d motor	4-pole 230/400 V (R 1:5)	
									Z				ete 230/400 V, 50/60 Hz	
									L				z (Exe, Exd)	
									P				e, Exd)	
									5				0 gearbox	
									6				2 gearbox	
									0		or, no g	·		
										Enclos 0	ure rat		rd) ISO class F	
										1			TEX-T3	
										2			TEX-13	
										A	ATEX			
										[`		senso		
											0		oke sensor	
											1		stroke sensor (Namur)	
													e length adjustment	
												0	Stroke length adjustment, manual	
												3	230 V 0-20 mA stroke controller	
												4	230 V 4-20 mA stroke controller	
												5	115 V 0-20 mA stroke controller	
												6	Control drive 115 V 4-20 mA	
												_	Other designs, such as explosion-proof, on request	
													Application	
													0 Standard	

Product Catalogue 2016

20 00 III-

Diaphragm Metering Pump Makro/5

2.3.3 **Spare Parts**

Spare Parts Kits for Diaphragm Metering Pump Makro/ 5 HM

The replacement part kit in general includes wear parts for the liquid ends.

- Metering diaphragm
- Suction valve compl.
- Discharge valve compl.
- Valve plate and Hast. C spring
- Seal kit complete (envelope rings, valve seat/valve seat bushing)

Liquid end		Order no.
FM 4000 PCT		1008172
FM 4000 PPT		1008171
FM 4000 TTT		1008173
FM 4000 SST	without valves cpl.	1008174

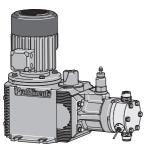
PTFE Metering Diaphragms

DEVELOPAN® diaphragm made of EPDM with woven fabric inlay, large-area, vulcanised aluminium core and PTFE-Teflon layer on the side in contact with the medium.

	Order no.
Metering diaphragm for Makro/ 5 FM 4000	1009023

2.4.1

Hydraulic Diaphragm Metering Pump Hydro/ 2

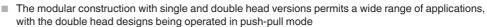

For flexible metering with excellent process reliability in the medium pressure range.

Capacity range of single pump: 3 - 72 l/h, 100 - 25 bar

requirements. Its modular construction, with either one or two dosing heads, 4 gear ratios, 2 dosing head sizes and 3 dosing head materials, offers a very high degree of flexibility in terms of areas of application. The Hydro/ 2 hydraulic diaphragm metering pump (HP2a) together with the Hydro/ 3 and Hydro/ 4 pumps

As an extremely robust hydraulic diaphragm metering pump, the Hydro/2 meets the most exacting safety

pk 2 074 Hydro


represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 - 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits

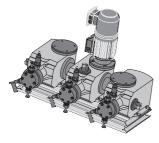
Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 20-100% stroke volume range under defined conditions and with proper installation

Excellent flexibility:

- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available

pk 2 073 Hydro double head pump


Technical details

- Stroke length: 15 mm, Rod force: 2,000 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control
- Metering reproducibility is better than \pm 1% in the 20 to 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electric diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1 Hydro externally mounted pump

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P PZ 0001 SW1 Hydro triplex pump

Technical Data

Type HP2a		Wi	th 1500 r	pm motor at 50 Hz	With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure suction side	Connection on suction/ pressure side	Shipping weight	Plunger Ø	
	1		ery rate	Max.	De	livery rate	Max.					
	ba		at max. ressure	stroke rate	back	at max. pressure	stroke rate					
		l/h	ml/	Strokes/	psi	l/h/gph	Strokes/	mWC	bar	G-DN	kg	mm
	bar		stroke	min		(US)	min					
100003*	100	3	0.8	60	1,450	3.6/1.0	72	3.0	5	Rp 1/4	31	16
100006*	100	6	8.0	125	1,450	7.0/1.8	150	3.0	5	Rp 1/4	31	16
100007*	100	7	0.8	150	1,450	8.0/2.1	180	3.0	5	Rp 1/4	31	16
100009*	100	9	8.0	187	1,450	11.0/2.9	224	3.0	5	Rp 1/4	31	16
100010*	100	10	0.8	212	_		-	3.0	5	Rp 1/4	31	16
064007	64	7	2.0	60	928	8.4/2.2	72	3.0	5	G 3/4-10	31	18
064015	64	15	2.0	125	928	18.0/4.8	150	3.0	5	G 3/4-10	31	18
064018	64	18	2.0	150	928	21.0/5.5	180	3.0	5	G 3/4-10	31	18
064022	64	22	2.0	187	928	26.0/6.9	224	3.0	5	G 3/4-10	31	18
064025	64	25	2.0	212	_		-	3.0	5	G 3/4-10	31	18
025019	25	19	5.3	60	362	23.0/6.1	72	3.0	5	G 3/4-10**	31	26
025040	25	40	5.3	125	362	48.0/12.7	150	3.0	5	G 3/4-10**	31	26
025048	25	48	5.3	150	362	58.0/15.3	180	3.0	5	G 3/4-10**	31	26
025060	25	60	5.3	187	362	72.0/19.0	224	3.0	5	G 3/4-10**	31	26
025068	25	68	5.3	212	_		-	3.0	5	G 3/4-10**	31	26

Material version PVDF max. 25 bar.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂	Ceramic
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT*	PTFE + 25% carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.37 kW	With PTC, speed adjustment range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	0.37 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.37 kW	With PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.55 kW	Ex-variable speed motor with integrated frequency converter.

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

^{*} Material design SST/HCT with double ball valve, valve connector on the suction-pressure ** HV design with G1 - DN 15 connector side as standard with internal thread Rp 1/4 and external thread G 3/4 - DN 10

2.4.2

Identity Code Ordering System HP2a

Hydro/ 2 (HP2a)

HP2a	Drive t	уре												
	Н	Main dri	/e											
	D	Main dri		ole-head	l versior	1								
	E	Main dri	,											
	F					for add-	on drive							
	A	Add-on	,		. 5.5101									
	В	Double-I		reinn ad	d-on dri	VA								
	T					ve s and 3 id	entical I	neade						
	'	Type*	Omprisii	ng o pov	wer ends	s and 5 io	entican	leaus						
		Type	bar	I/h			bar	l/h			bar	I/h		
		100003		3		064007		7		025019		19		
		100003		6		064015		15		025040		40		
		100007		7		064018		18		025040		48		
						064018								
		100009		9				22		025060		60		
		100010		10		064025	64	25		025068	25	68		
				end ma										
			SS		ss steel		00500	0 0040	07 004	005)				
			PV			r 025019	- 02506	8, 0640	07 - 064	025)				
			HC	Hastell	•									
			TT		- 25% ca									
					g mater	rial*								
				Т	PTFE									
					Displa	cement								
					0			•	phragm	with rupt	ure sigr	alling fa	cility	
						Liquid 6	-							
						0	No valv	e sprin	gs (stand	dard)				
						1	With va	alve spri	ngs					
						D	Double	ball val	ve (only	for SST	and HC	T)		
						Н	HV ver	sion (on	ly for 02	5019-025	5060)			
							Hydra	ulic con	nection	1				
							0	Standa	rd threa	ded conn	ector			
							E	With D	IN ISO f	lange				
							F	With A	NSI flan	ge				
								Versio		_				
								0		oMinent®	logo			
								1		t ProMine		0		
								М	Modifie					
										ical powe	er sunn	ılv		
									S	3 ph, 23			Hz. 0.37	kW
									T	3 ph, 23				
									R					0 V/400 V, 0.37 kW
									V (0)			•		rated frequency converter
									Z (0)				_	t, 230 V, 50/60 Hz
									L			•		kd), 0.37 kW
									P					kd), 0.37 kW
									V (2)				,	raj, 0.37 kw pr. frequency converter (Exd)
													_	ir. frequency converter (Exa)
									1	No moto		•		74
									3	No moto		•		
									4	No moto		iange ivi	EIVIA 56	10
									0	Add on o	drive			
										Enclosu				
										0		standard		
										1		otor vers		
										2	Exde i	notor ve	rsion A7	TEX-T4
										Α	ATEX	power e	nd	
											Stroke	e senso	r	
											0			sor (standard)
											1	Stroke	sensor	(for explosion-proof applications)
									1		Ī			n adjustment
									1		Ī	0		al (standard)
												1		troke positioning motor, 230 V/50/60 Hz
												2		troke positioning motor, 115 V/60 Hz
									1		Ī	A		troke control motor 020 mA 230 V/50/60 Hz
									1		Ī	В		troke control motor 420 mA 230 V/50/60 Hz
									1		Ī	С		troke control motor 020 mA 115 V/60 Hz
									1		Ī	D		
									1		Ī	D		troke control motor 420 mA 115 V/60 Hz
									1		Ī			nulic oil
									1		Ī		0	Standard
									1		Ī		1	Food grade
									1		Ī		2	Low temperature to -25 °C
													3	Low temperature Zone 2
					* D\/T r	nax. 25	har						•	

* PVT max. 25 bar

1.1.2016 Product Catalogue 2016 2-23

2.4.3 Spare Parts

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- 1 Diaphragm
- 2 Valve balls
- 1 Sealing set, complete

Scope of delivery with PVT material version

- 1 Diaphragm
- 1 Suction valve, complete
- 1 Discharge valve, complete
- 2 Valve balls
- 1 Sealing set, complete

Spare parts kits for Hydro/ 2

Applies to identity code: Type 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007

Liquid end	Materials in contact with the medium		Order no.
FMH 25 - DN 10	PVT		1005548
	SST		1005549
	SST	for double ball valves	1029260
	HCT		1009571
	SST	with valves cpl.	1005550

Applies to identity code: Type 025068, 025060, 025048, 025040, 025019

Liquid end	Materials in contact with the medium		Order no.
FMH 60 - DN 10	PVT		1005552
	SST		1005553
	SST	for double ball valves	1005555
	HCT		1009573
	SST	with valves cpl.	1005554

PTFE/1.4404 Metering Diaphragms for Hydro/ 2

Liquid end		Order no.	
FMH 25	Applies to identity code (SST): 100010, 100009, 100007, 100006, 100003, 064025, 064022, 064018, 064015, 064007	1005545	
FMH 60	Applies to identity code (SST): 026068, 025060, 025048, 025040, 025019	1005546	

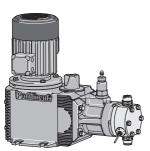
Diaphragms PTFE/Hastelloy C Coated for Hydro/ 2

Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

Base for Hydro hydraulic diaphragm metering pumps

	Order no.	
Base for Hydro/ 2, dimensions: 300 x 160 x 128 mm (LxWxH)	1005660	

2.5.1

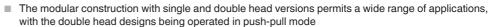

Hydraulic Diaphragm Metering Pump Hydro/3

For flexible metering with excellent process reliability in the medium pressure range.

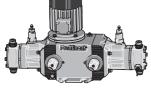
Capacity range of single pump: 10 - 180 l/h, 100 - 25 bar

The Hydro/ 3 is an extremely robust hydraulic diaphragm metering pump. It meets the most exacting safety requirements. Its modular construction offers extremely good flexibility in terms of application, for example in the oil and gas industry.

pk_2_074 Hydro

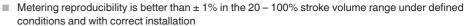

The Hydro/ 3 hydraulic diaphragm metering pump (HP3a) together with the Hydro/ 2 and Hydro/ 4 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 – 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others.

Your benefits


Excellent process safety and reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 20-100% stroke volume range under defined conditions and with proper installation

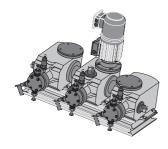
Excellent flexibility:


- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

pk_2_073 Hydro double head pump

Technical details

- Stroke length: 15 mm, Rod force: 4,200 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control drive)


- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1

Hydro externally mounted pump

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Technical Data

Type HP3a	With 1500 rpm motor at 50 Hz			With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure suction side	Connection suction/ discharge side	Shipping weight	Plunger Ø		
			ery rate	Max.	Deli	ivery rate	Max.					
	b		at max. ressure	stroke rate	back	at max. pressure	stroke rate					
		I/h	ml/	Strokes/	psi	l/h/gph	Strokes/	mWC	bar	G-DN	kg	mm
	bar		stroke	min		(US)	min					
100010*	100	10	2.8	60	1,450	12/3.2	72	3.0	5	Rp 3/8–10	41	22
100021*	100	21	2.8	125	1,450	25/6.6	150	3.0	5	Rp 3/8-10	41	22
100025*	100	25	2.8	150	1,450	30/7.9	180	3.0	5	Rp 3/8–10	41	22
100031*	100	31	2.8	187	1,450	37/9.8	224	3.0	5	Rp 3/8-10	41	22
100035*	100	35	2.8	212	1,450		-	3.0	5	Rp 3/8–10	41	22
064019	64	19	5.3	60	928	23/6.1	72	3.0	5	G 3/4-10**	41	26
064040	64	40	5.3	125	928	48/12.7	150	3.0	5	G 3/4-10**	41	26
064048	64	48	5.3	150	928	58/15.3	180	3.0	5	G 3/4-10**	41	26
064060	64	60	5.3	187	928	72/19.0	224	3.0	5	G 3/4-10**	41	26
064068	64	68	5.3	212	928		_	3.0	5	G 3/4-10**	41	26
025048	25	48	13.4	60	362	58/15.3	72	3.0	5	G 1–15***	41	38
025100	25	100	13.4	125	362	120/31.7	150	3.0	5	G 1–15***	41	38
025120	25	120	13.4	150	362	144/38.0	180	3.0	5	G 1–15***	41	38
025150	25	150	13.4	187	362	180/47.6	224	3.0	5	G 1–15***	41	38
025170	25	170	13.4	212	362		-	3.0	5	G 1–15***	41	38

Material version PVDF max. 25 bar.

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls
SST	Stainless steel 1.4571/1.4404	Stainless steel 1.4581	PTFE/ZrO ₂	Ceramic
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic
HCT	Hast. C	Hast. C	PTFE/Hast. C	Ceramic
TTT*	PTFE + 25% carbon	PVDF (polyvinylidene fluoride)	PTFE/PTFE	Ceramic

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.75 kW	
Т	3 ph, IP 55	220-240 V/380-420 V 265-280 V/440-480 V	50 Hz 60 Hz	0,75 kW	with PTC, speed adjustment range 1:5
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.75 kW	with PTC, speed control range 1:20 with external fan 1 ph 230 V; 50/60 Hz
V0	1 ph, IP 55	230 V ±10%	50/60 Hz	0.75 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.75 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.75 kW	with PTC, speed adjustment range 1:5
P1	3 ph, II2GEExelIT3	254-277 V/440-480 V	60 Hz	0.75 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	0.75 kW	with PTC, speed adjustment range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	0.75 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

Material version SST/HCT with double ball valve, valve connection on suction/discharge side designed as standard with internal thread Rp 3/8 and external, thread G 3/4-DN 10

^{***}HV version with 1 1/4" DN 20 connection

^{*} HV version with G 1 - DN 15 connection

2.5.2

Identity Code Ordering System HP3a

Hydro/ 3 (HP3a)

Drive	type												
H	Main dri	ve											
D	Main dri		ble-head	d versio	n								
E	Main dri	,											
F					n for add	d-on drive							
A	Add-on		Sic Heat	G VC1310	ii ioi au	a on unive							
В	Double-		areion oc	dd-on d	rive								
T						identical l	haade						
· .	Type*	ompno	ing o po	wer ene	35 and 0	identican	iicaas						
	Type	bar	l/h				bar	l/h				bar	l/h
	100010	100	10			064019		19			025048		48
	100021	100	21			064040		40			025100		100
	100025	100	25			064048		48			025120		120
	100031	100	31			064060		60			025150		150
	100035		35			064068		68			025170		170
			end m	aterial									
		SS		ess stee									
		PV	PVDF	(max. 2	25 bar, o	only for 02	5048 - (025170,	064019	- 06406	8)		
		HC	Hastel	loy C		•							
		TT	PTFE -	+ 25% c	carbon								
			Sealin	g mate	erial*								
			Т	PTFE									
				Displa	acemen	t body*							
				0		ard multi-l	ayer dia	aphragm	with rup	ture sig	nalling fa	cility	
					Liquid	d end ver	sion						
					0			s (stand	ard)				
					1	With val		-					
					D			e (for 1	00010-1	00035,	064019-0)64060,	, only for SST and HCT)
					Н	HV-Vers							
Ī				1		Hydrau							
Ī				1		0			aded con	nector			
						E		IN ISO f					
						F		NSI flan	ge				
							Version			@ L			
Ī				1		1	0		oMinent				
							1		t ProMin	eur., 106	JO		
Ī				1		1	М	Modifie					
									ical pow			J- 0.75	= L/M
								S T			V, 50/60 I		
								R			V, 50/60 I		
								V (0)			•		0 V/400 V, 0.75 kW grated frequency converter
								Z (0)				_	t, 230 V, 50/60 Hz
								L					(d), 0.75 kW
								P			,		(d), 0.75 kW
Ī				1		1		V (2)			•		gr. frequency converter (Exd)
								1			flange 20	_	
								3			_		e 80, Ø 160
Ī				1		1		4			flange N		
								0	Add on	,	90 141		
Ī				1		1				sure rat	ina		
									0		standard)		
Ī				1		1			1		otor versi		X-T3
Ī				1		1			2		otor versi		
									A		oower en		
Ī				1		1					sensor		
										0		e sens	or (standard)
Ī				1		1				1			for explosion-proof applications)
Ī				1		1							adjustment
											0		al (Standard)
Ī				1		1					1		troke positioning motor, 230 V/50/60 Hz
											2		troke positioning motor, 115 V/60 Hz
											Α		troke control motor 0-20 mA 230 V/50/60 H
				1							В		troke control motor 4-20 mA 230 V/50/60 H
				1							С		troke control motor 0-20 mA 115 V/60 Hz
Ī				1		1					D		troke control motor 4-20 mA 115 V/60 Hz
													nulic oil
												0	Standard
		I	İ	1		1	1					1	Food grade
												2	Low temperature to -25 °C

* PVT max. 25 bar

2.5.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- Diaphragm
- Valve balls
- Sealing set, complete

Scope of delivery with PVT material version

- Diaphragm
- Suction valve, complete
- Discharge valve, complete
- Valve balls
- Sealing set, complete

Spare parts kits for Hydro/ 3

Applies to identity code: Type 100035, 100031, 100025, 100021, 100010, 064068, 064060, 064048, 064040, 064019

Liquid end	Materials in contact with the medium		Order no.
FMH 60 - DN 10	PVT		1005552
	SST		1005553
	SST	for double ball valves	1005555
	HCT		1009573
	SST	with valves cpl.	1005554

Applies to identity code: Type 025170, 025150, 025120, 025100, 025048

Liquid end	Materials in contact with the medium		Order no.
FMH 150 - DN 15	PVT		1005556
	SST		1005557
	HCT		1009575
	SST	with valves cpl.	1005558

Metering Diaphragm PTFE/1.4404 for Hydro/ 3

Liquid end		Order no.
FMH 60	Applies to identity code (SST) 064025, 064022, 064018, 064015, 064007, 100010, 100009, 100007, 100006, 100003	1005546
FMH 150	Applies to identity code (SST): 025170, 025150, 025120, 025100, 025048	1005547

Diaphragms PTFE/Hastelloy C Coated for Hydro/ 3

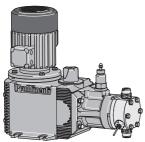
Liquid end		Order no.
FMH 25	Applies to identity code (PVT/HCT): 064025, 064022, 064018, 064015, 064007	1006481
FMH 60	Applies to identity code: 025068, 025060, 025048, 025040, 025019	1006482

Base for Hydro hydraulic diaphragm metering pumps

	Order no.
Base for Hydro/ 3, dimensions: 324 x 180 x 128 mm (LxWxH)	1005661

2.6.1

Hydraulic Diaphragm Metering Pump Hydro/ 4


For flexible metering with excellent process reliability in the medium pressure range.

Capacity range of single pump: 130 - 1,450 l/h, 25 - 7 bar

The Hydro/ 4 is an extremely robust hydraulic diaphragm metering pump, which meets the most exacting safety requirements - it is equipped as standard with a pressure relief valve and PTFE multi-layer diaphragm with diaphragm rupture warning system. Its modular construction offers extremely good flexibility in terms of applications.

The Hydro/ 4 hydraulic diaphragm metering pump (HP4a) together with the Hydro/ 2 and Hydro/ 3 pumps represent an integrated product range with stroke lengths of 15 and/or 20 mm. This covers the capacity range from 3 to 1,450 l/h at 100 - 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Hydro product range is designed to comply with API 675 among others. Your benefits Excellent process safety and reliability:

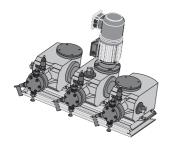
pk_2_074 Hydro

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than \pm 1% in the 20-100% stroke volume range under defined conditions and with proper installation.

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 5 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

pk 2 073 Hydro double head pump


Technical details

- Stroke length: 20 mm, Rod force: 5,800 N
- Stroke volume adjustment range: 0 100%
- Stroke volume adjustment: manually by scaled rotary dial (optionally with electric actuator or control
- Metering reproducibility is better than ± 1% in the 20 100% stroke volume range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, Hastelloy C.
- A wide range of power end versions is available: three-phase standard or 1-phase AC motor, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

P_HY_0040_SW1 Hydro externally mounted pump

- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_PZ_0001_SW1 Hydro triplex pump

Technical Data

Type HP4a	Wit	h 1500 r	pm motor at 50 Hz	With 1800 rpm moto at 60 Hz			Suction lift	Perm. pre- pressure	Connection suction/	Shipping weight	Plunger Ø
		ery rate at max. ressure	Max. stroke rate		elivery rate at max. k pressure	Max. stroke rate		suction side	discharge side		
	bar	l/h	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	G-DN	kg	mm
250130	25	130	71	363	155/41	86	3	1	G 1 1/2-25	69	52
250190	25	190	103	363	230/61	124	3	1	G 1 1/2-25	69	52
250250	25	250	136	363	300/79	164	3	1	G 1 1/2-25	69	52
250350	25	350	188	363	420/111	225	3	1	G 1 1/2–25	69	52
250400	25	400	214	_		_	3	1	G 1 1/2–25	69	52
160210	16	210	71	232	250/66	86	3	1	G 1 1/2–25	76	63
160300	16	300	103	232	360/95	124	3	1	G 1 1/2–25	76	63
160400	16	400	136	232	480/127	164	3	1	G 1 1/2–25	76	63
160550	16	550	188	232	660/174	225	3	1	G 1 1/2–25	76	63
160625	16	625	214	_		_	3	1	G 1 1/2–25	76	63
100330	10	330	71	145	400/106	86	3	1	G 2–32	87	80
100480	10	480	103	145	580/153	124	3	1	G 2–32	87	80
100635	10	635	136	145	760/201	164	3	1	G 2–32	87	80
100880	10	880	188	145	1,050/277	225	3	1	G 2–32	87	80
101000	10	1,000	214	_		_	3	1	G 2–32	87	80
070465	7	465	71	102	560/148	86	3	1	G 2 1/4-40	96	94
070670	7	670	103	102	805/213	124	3	1	G 2 1/4-40	96	94
070890	7	890	136	102	1,070/283	164	3	1	G 2 1/4-40	96	94
071230	7	1,230	188	102	1,450/383	225	3	1	G 2 1/4-40	96	94
071400	7	1,400	214	-		-	3	1	G 2 1/4-40	96	94

Materials in Contact With the Medium

			DN 25 b	all valves		DN 32/D	N 40 plate valves	
Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seats	Seals	Valve plates/ valve springs	Valve seats
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE	Stainless steel 1.4404	PTFE	PTFE	Stainless steel 1.4404/ Hast. C	PTFE
PVT	PVDF (polyvinylidene fluoride)	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E- CTFE	PTFE
НСТ	Hast. C	Hast. C	PTFE	Hast. C	PTFE	PTFE	Hast. C / E- CTFE	PTFE
TTT*	PTFE + 25% carbon	PVDF (polyvinylidene fluoride)	PTFE	Glass	PTFE	PTFE	Ceramic/E- CTFE	PTFE

^{*} Specifically for areas at risk from explosion

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V	50 Hz	1.1 kW	
		250-280 V/440-480 V	60 Hz		
Т	3 ph, IP 55	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
		265-280 V/440-480 V	60 Hz		
R	3 ph, IP 55	230 V/400 V	50/60 Hz	1.5 kW	With PTC, speed control range 1:20,
					with external fan 1 ph 230 V; 50/60 Hz
V0	3 ph, IP 55	400 V	50/60 Hz	1.5 kW	Variable speed motor with integrated
					frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	1.1 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.1 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	254-277 V/440-480 V	60 Hz	1.1 kW	
P2	3 ph, II2GEExdIICT4	254-277 V/440-480 V	60 Hz	1.1 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	1.5 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.6.2

Identity Code Ordering System HP4a

Hydro/ 4 (HP4a)

HP4a	Drive t	уре															
	Н	Main drive															
	D	Main drive, double-head version															
	E	Main drive for add-on drive															
	F	Main dr	ive, dou	ıble-hea	d versio	n for add-	on driv	е									
	Α	Add-on	drive														
	В	Double-	Double-head version add-on drive														
	Т	Triplex	Triplex comprising 3 power ends and 3 identical heads														
		Type*															
			bar	l/h			bar	l/h				bar	l/h			bar	l/h
		250130	25	130		160210	16	210			100330	10	330		070465	7	465
		250190	25	190		160300	16	300			100480	10	480		070670	7	670
		250250	25	250		160400	16	400			100635	10	635		070890	7	890
		250350	25	350		160550	16	550			100880	10	880		071230	7	1,230
		250400	25	400		160625	16	625			101000	10	1,000		071400	7	1,400
		Liquid end material SS Stainless steel															
		PV PVDF															
			HC	Hastell	loy C												
			TT	PTFE -	+ 25% ca	arbon											
				Sealin	g mater	rial											
				Т	PTFE												
					Displa	cement	body										
	1		Ī		0	Standar	d multil	ayer diap	hragm	with rupt	ture sign	alling fa	cility				
						Liquid 6	end ver	sion									
						0	No val	ve sprinç	gs (stand	dard)							
						1	With v	alve spri	ngs								
							-	ulic con									
							0			ded con	nection						
							E		IN ISO f								
							F		NSI flan	ge							
								Versio			_						
								0		oMinent							
								1			ent® logo						
								3			t® logo, v	vith elec	ctrical ov	erpressure dis	play		
								M	Modifie	ed							
											er supp						
									S		30/400 V						
									T		30/400 V						
									R					/400 V, 1.5 kW			
									V (0)				_	rated frequenc	•	er	
									Z	-				, 230 V, 50/60	HZ		
									L P	-				d), 1.1 kW			
									1				•	d), 1.1 kW		1\	
									V (2)				_	r. frequency co	onverter (E	exa)	
									1 3		or, with f	•		20			
									4		or, with f	-					
									0	Add on		iange iv	EIVIA I C	143/145			
									U								
											ure ratio		`				
										1	IP 55 (s		on ATE	Y-T3			
										2			ion ATE				
										A	ATEX p			X 14			
										, ,	Stroke						
											0			or (standard)			
											1			(for explosion-	oroof anni	ication	ns)
	1		Ī						1					adjustment			,
												0	Manua	l (Standard)			
												K		l (outdoor, SS)			
	1		Ī						1			1		roke positionin		30 V/	50/60 Hz
												2					
	1		Ī			2 With stroke positioning motor, 115 V/60 Hz A With stroke control motor 0-20 mA 230 V/50/60 Hz											
						B With stroke control motor 4-20 mA 230 V/50/60 Hz											
	1		Ī				C With stroke control motor 0-20 mA 115 V/60 Hz D With stroke control motor 4-20 mA 115 V/60 Hz Hydraulic oil										
													0	Standard			
													1	Food grade			
													2	Low temperat	ure to -25	°C	
														p			
			1									1					

* PVT max. 25 bar

2.6.3 **Spare Parts**

The spare parts kit generally includes the wear parts for the liquid ends.

Scope of delivery with SST/HCT material version

- Diaphragm
- Valve balls
- Sealing set, complete

Scope of delivery with PVT material version

- Diaphragm
- Suction valve, complete
- Discharge valve, complete
- Valve balls
- Sealing set, complete

Spare parts kits for Hydro/ 4

Identity code 250130, 250190, 250250, 250350, 250400

Liquid end	Materials in contact with the medium		Order no.
FMH 400 - DN 25	PVT		1043763
	PVT	with valve	1023057
	SST		1040812
	SST	with valve	1040813
	HCT		1040860

Identity code 160210, 160300, 160400, 160550, 160625

Liquid end	Materials in contact with the medium		Order no.
FMH 625 - DN 25	PVT		1043775
	PVT	with valve	1040863
	SST		1040824
	SST	with valve	1040825
	HCT		1040861

Identity code 100330, 100480, 100635, 100880, 101000

Liquid end	Materials in contact with the medium		Order no.
FMH 1000 - DN 32	PVT		1043776
	PVT	with valve	1040866
	SST		1040826
	SST	with valve	1040827
	HCT		1040864

Identity code 0704650, 070670, 070890, 071230, 071400

Liquid end	Materials in contact with the medium		Order no.
FMH 1400 - DN 40	PVT		1043777
	PVT	with valve	1040869
	SST		1040828
	SST	with valve	1040829
	HCT		1040867

Metering Diaphragm PTFE/1.4404 for Hydro/ 4

Liquid end		Order no.
FMH 400	Identity code (SST) 250130, 250190, 250250, 250350, 250400	1040808
FMH 625	Identity code (SST) 160210, 160300, 160400, 160550, 160625	1040809
FMH 1000	Identity code (SST) 100330, 100480, 100635, 100880, 101000	1040810
FMH 1400	Identity code (SST) 0704650, 070670, 070890, 071230, 071400	1040811

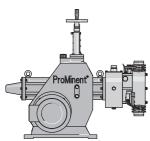
Diaphragms PTFE/Hastelloy C Coated for Hydro/ 4

Liquid end		Order no.
FMH 400	Identity code (HCT) 250130, 250190, 250250, 250350, 250400	1040874
FMH 625	Identity code (HCT) 160210, 160300, 160400, 160550, 160625	1040875
FMH 1000	Identity code (HCT) 100330, 100480, 100635, 100880, 101000	1040876
FMH 1400	Identity code (HCT) 0704650, 070670, 070890, 071230, 071400	1040877

Base for Hydro hydraulic diaphragm metering pumps

P_PZ_0010_SW1

	Order no.
Base for Hydro/ 4, dimensions: 344 x 250 x 120 mm (LxWxH)	1051421


Hydraulic Diaphragm Metering Pump Makro/5

Hydraulic Diaphragm Metering Pump Makro/ 5

Excellent feed rates in the low pressure range

Capacity range of single pump: 450 - 6,108 l/h, 25 - 6 bar

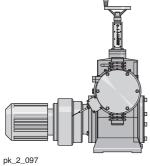
The robust hydraulic diaphragm metering pump Makro/ 5 guarantees outstanding process reliability. Its modular construction offers extremely good flexibility and a large range of power end versions are available.

pk_2_096 Makro/ 5 M5Ha

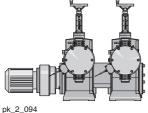
The Makro/ 5 hydraulic diaphragm metering pump (M5Ha) together with the Makro/ 5 diaphragm and plunger metering pumps form an integrated product range with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Makro/ 5 product range is designed to comply with API 675 among others.

Excellent process safety and reliability:

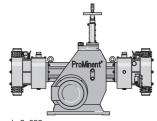
- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- Metering reproducibility is better than ± 1% within the 10-100% stroke length range under defined conditions and with correct installation.


Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request


Technical details

- Stroke length: 0 50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100% н
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than \pm 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: PVDF, PTFE+25% carbon, stainless steel 1.4571, special materials are available on
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others


- Oil and gas industry.
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Makro/ 5 M5Ha

Makro/ 5 externally mounted pump

Makro/ 5 double head pump

Hydraulic Diaphragm Metering Pump Makro/5

Variable speed motor with integrated frequency converter

Control of Makro/5 Hydraulic Diaphragm Metering Pumps

Makro/ 5 stroke length controller

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Actuating period approx. 100 sec for 100% stroke length, including 2 limit switches for min./max. position, IP 54 degree of protection. Electrical connection 230 V (±10%), 50/ 60 Hz, 40 W mechanical stroke length display fitted on the Makro/ 5 power end.

Special voltage/higher degrees of protection/explosion protection on request.

Standard signal current input 0/4-20 mA, corresponds to stroke length 0 - -100%; internal switch for manual /automatic operation, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. motor power 0.37/0.75/1.1 kW.

Externally controllable with 0/4-20 mA or 0-10 V corresponding to 0-50 (60) Hz output frequency.

Frequency Converters for Speed Control See page → 1-76

Stroke sensor with Namur signal

Mounting on the crank drive mechanism of the Makro/ 5 gearbox. For precise measurement of each metering stroke, comprising electronic cams and inductive proximity switches, switching signal according to Namur. In combination with electronic pre-selection meters suitable for batch metering or proportional metering in conjunction with proportional control.

Retrospective fitting only possible in the factory.

Approved for Ex safety operation with degree of protection EEx ia II C T6.

Technical Data

Type M5Ha	Wit	th 1500	rpm moto	or at 50 Hz	With 1800 rpm motor at 60 l			or at 60 Hz	Suction lift	Connection suction/ discharge side	Shipping weight	Plunger Ø
	Deliv	-	at max.	Max.	Deliv	ery rate		Max.				
		back p	ressure	stroke rate		back pi	ressure	stroke rate				
	bar	I/h	ml/	Strokes/	psi	l/h	gph	Strokes/	mWC	G-DN	kg	mm
	Dai	,,,,	stroke	min	Poi	.,	(US)	min		a bit	"g	
250450	25	450	125.0	60	362	537	142	72	3.0	G 2–32	320	60
250562	25	562	125.0	75	362	671	177	89	3.0	G 2–32	320	60
250772	25	772	125.0	103	362	922	244	123	3.0	G 2-32	320	60
250997	25	997	125.0	133	362	1,191	315	159	3.0	G 2–32	320	60
251170	25	1,170	125.0	156	_	-	_	-	_	G 2-32	320	60
160616	16	616	171.2	60	232	736	194	72	3.0	G 2 1/4-40	320	70
160770	16	770	171.2	75	232	920	243	89	3.0	G 2 1/4-40	320	70
161058	16	1,058	171.2	103	232	1,264	334	123	3.0	G 2 1/4-40	320	70
161366	16	1,366	171.2	133	232	1,633	431	159	3.0	G 2 1/4-40	320	70
161602	16	1,602	171.2	156	_	-	-	-	3.0	G 2 1/4-40	320	70
120716	12	716	199.0	60	174	855	226	72	3.0	G 2 1/4-40	320	75
120895	12	895	199.0	75	174	1,069	282	89	3.0	G 2 1/4-40	320	75
121229	12	1,229	199.0	103	174	1,469	388	123	3.0	G 2 1/4-40	320	75
121588	12	1,588	199.0	133	174	1,898	501	159	3.0	G 2 1/4-40	320	75
121862	12	1,862	199.0	156	_	-	-	-	3.0	G 2 1/4-40	320	75
120919	12	919	255.3	60	174	1,098	290	72	3.0	G 2 1/4-40	320	85
121148	12	1,148	255.3	75	174	1,372	362	89	3.0	G 2 1/4-40	320	85
121577	12	1,577	255.3	103	174	1,885	498	123	3.0	G 2 1/4-40	320	85
122037	12	2,037	255.3	133	174	2,435	643	159	3.0	G 2 1/4-40	320	85
122389	12	2,389	255.3	156	_	2,856	754	-	3.0	G 2 1/4-40	320	85
101345	10	1,345	374.0	60	145	1,607	425	72	3.0	G 2 3/4-50	330	100
101680	10	1,680	374.0	75	145	2,008	530	89	3.0	G 2 3/4-50	330	100
102310	10	2,310	374.0	103	145	2,761	729	123	3.0	G 2 3/4-50	330	100
102980	10	2,980	374.0	133	145	3,562	941	159	3.0	G 2 3/4-50	330	100
103500	10	3,500	374.0	156	_	-	_	-	3.0	G 2 3/4-50	330	100
062305	6	2,305	641.0	60	87	2,755	728	72	3.0	flange-65*	330	130
062880	6	2,880	641.0	75	87	3,443	910	89	3.0	flange-65*	330	130
063960	6	3,960	641.0	103	87	4,734	1,251	123	3.0	flange-65*	330	130
065110	6	5,110	641.0	133	87	6,108	1,614	159	3.0	flange-65*	330	130
066000	6	6,000	641.0	156	-	-	-	-	3.0	flange-65*	330	130

Material Version PPT/PCT/TTT max. 10 bar

Materials in Contact With the Medium

			DN 32/DN50/DN65 plate valves				DN 40 plate	valves	
	Dosing head	Suction/	Seals	Valve plates/	Valve		Seals	Valve	Valve
		pressure valve		valve springs	seats			plates	seats
PPT	Polypropylene	Polypropylene	PTFE	Hast C.	PTFE	PPE	EPDM	Hast. C	PTFE
PCT	PVC	PVC	PTFE	Hast C.	PTFE	PCA	Viton®	Hast. C	PTFE
TTT	PTFE with carbon	PTFE with carbon	PTFE	Hast C.	PTFE	TTT	PTFE	Hast. C	PTFE
SST	Stainless steel material no. 1.4571/1.4404	Stainless steel material no. 1.4571/1.4404	PTFE	Hast C.	PTFE	SST	PTFE	Hast. C	PTFE

Patented multi-layer diaphragm, vacuum-packed Special designs available on request Viton® is a registered trademark of DuPont Dow Elastomers

^{*} SST version with G 2 1/2" thread

2.7.2

Identity Code Ordering System for M5Ha

Motor-driven metering pump M5Ha

M5Ha	Drive t	ype												
	Н	Main driv	е											
	Α	Add-on p	ower er	nd										
	D	Double m												
	В			ower end										
		Type*	aa on p	owor ond										
		250450	1	160616		120716		120919		101345		062305		
		250562		160770		120895		121148		101680		062880		
		250772		161058		121229		121577		102310		063960		
		250997		161366		121588		122037		102980		065110		
		251170		161602		121862		122389		103500		066000		
				end mat	erial									
			PC	PVC										
			PP	Polyprop	-									
			SS	Stainless										
			TT	PTFE + 2	25% ca	bon								
				Sealing	materi	al								
				Т	PTFE									
					Displa	cement b	odv							
					Т	Compos	ite diaph	ragm, PT	FE coat	ina. with	rupture	indicator		
						Liquid e				, ,				
						1		alve spring	ns					
						l		ulic conn						
							nyura 0	l Standard		otion				
							1			nd insert				
							1 -							
							2	Union nu						
							3			and inser	τ			
							4	SS unior		dinsert				
								Version						
								0	with Pr	oMinent [®]	logo, n	o frame		
								1	withou	ProMine	ent® logo	o, no fran	ne	
								Α	with Pr	oMinent [®]	logo, w	ith frame	, simple	X
								В	with Pr	oMinent [®]	logo, w	ith frame	, duplex	
								С	with Pr	oMinent [®]	logo, w	ith frame	, triplex	
								D	with Pr	oMinent [®]	logo, w	ith frame	, quadrı	ıplex
								М	Modifie	ed				
									Electri	cal pow	er supp	lv		
									S			50/60 H	z (WBS)	
									R	Variable	speed	motor 4-	ole. 23	0/400 V
									V (0)			r. freque		
									L			50 Hz (E		
									P			60 Hz (E		,
									V (2)					verter (Exd)
									5			gearbox I		verter (EXU)
									6		,	gearbox I		
									0			-	EC 112	
									U	No moto	_			
										Enclosu			00	_
										0	,	Standard	,	ass F
										1		rsion ATI		
										2		rsion ATI		
										Α	_	oower en	a	
												sensor		
											0	No strol		
											1	With str	oke sen	sor (Namur)
												Stroke		adjustment
												0	Stroke	length adjustment, manual
												3		0-20 mA stroke controller
												4		4-20 mA stroke controller
												5		0-20 mA stroke controller
												6		4-20 mA stroke controller
												Ĭ	Applic	
													Applic 0	Standard
													3	
													3	Low temperature to -25 °C

^{*} Material version PC/PP/TT max. 10 bar

ProMinent

2.7 Hydraulic Diaphragm Metering Pump Makro/ 5

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExelIT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExelICT4	400 V ±10%	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.7.3 Spare Parts

The spare parts kits generally contain the consumable components for the liquid ends.

- 1 metering diaphragm
- 1 suction valve set
- 1 discharge valve set
- 1 seal set (O-rings, packing rings, valve seat, valve seat housings)

Spare Parts Kits for Makro/ 5 HMH

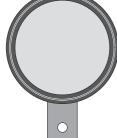
Identity code: 250450, 250562, 250772, 250997, 251170

Liquid end	iquid end Materials in contact with the medium		Order no.
FMH 60-50	S	with 2 valves cpl.	1008170
	S	without valves cpl.	1008169

Identity code: 160616, 160770, 161058, 161366, 161602, 120716, 120895, 121229, 121588, 121862, 120919, 121148, 121577, 122037, 122389

Liquid end	Materials in contact with the medium		Order no.
FMH 70/75/85-50	PPT		911904
	PCT		911902
	TTT		911906
	SST		911910
	SST	without valves cpl.	911909

Identity code: 101345, 101680, 102310, 102980, 103500


Liquid end	Materials in contact with the medium		Order no.
FMH 100-50	PP		1008246
	Р		1008247
	Т		1008248
	S	with valves cpl.	1008250
	S	without valves cpl.	1008249

Identity code: 062305, 062880, 063960, 065110, 066000

Liquid end	Materials in contact with the medium		Order no.
FMH 130-50	PP		1008251
	Р		1008252
	Т		1008253
	S	with valves cpl.	1008265
	S	without valves cpl.	1008264

Metering Diaphragms for Makro/ 5 HMH

pk_2_024

2.8 Hydraulic Diaphragm Metering Pump Orlita® Evolution 1

2.8.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 1

Maximum process reliability and flexibility.

Capacity range of single pump: 3 - 355 l/h, 400 - 12 bar

The Orlita® Evolution 1 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control. Its modular construction offers extremely good flexibility in terms of applications.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 – 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

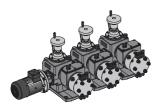
Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation

Excellent flexibility

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request


Technical details

- Stroke length: 0 15 mm, Rod force: 2,300 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Metering of reactants and catalysts in the chemical industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

68_52-101_00_01-0a-Evo1_SW1 Orlita® Evolution EF1a

P_PZ_0008_SW1 Orlita® Evolution triplex pump

2.8 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 1

Technical Data for EF1a Single Pump 50 Hz

Plunger Ø	Stroke volume			٦	Γheoretic		capacity okes/min		Max. pressure	E	Standard type of valve	
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/stro-	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	ke									pressure	pressure	
10	1.18	5.2	6.9	8.2	10.2	11.7	12.8	14.2	293	0.62	0.62	DN 3
12	1.70	7.4	9.9	11.8	14.8	16.8	18.4	20.5	203	0.85	0.86	DN 3
14	2.31	10.1	13.4	16.1	20.1	22.9	25.1	27.8	149	0.62	0.83	DN 6
16	3.02	13.2	17.6	21.0	26.2	29.9	32.8	36.4	114	0.72	0.87	DN 6
19	4.25	18.6	24.8	29.6	37.0	42.1	46.2	51.3	81	0.87	0.92	DN 6
23	6.23	27.3	36.3	43.4	54.2	61.7	67.7	75.2	55	0.93	0.95	DN 10
27	8.59	37.6	50.0	59.8	74.7	85.0	93.3	103.6	40	0.95	0.96	DN 10
34	13.62	59.7	79.3	94.8	118.5	134.8	147.9	164.2	25	0.94	0.94	DN 10
40	18.85	82.6	109.7	131.2	164.0	186.6	204.7	227.3	18	0.94	0.94	DN 10

Technical Data for EF1a Single Pump 60 Hz

Plunger Ø	Stroke volume		1	heoretical p	oump capaci strokes/m	•	Max. pressure	Ef	Standard type of valve	
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/stro-	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	ke							pressure	pressure	
10	1.18	6.2	8.3	9.9	12.4	14.1	293	0.62	0.62	DN 3
12	1.70	9.0	11.9	14.3	17.8	20.3	203	0.85	0.86	DN 3
14	2.31	12.2	16.2	19.4	24.2	27.6	149	0.62	0.83	DN 6
16	3.02	15.9	21.2	25.3	31.7	36.0	114	0.72	0.87	DN 6
19	4.25	22.5	29.9	35.7	44.7	50.8	81	0.87	0.92	DN 6
23	6.23	32.9	43.7	52.3	65.4	74.4	55	0.93	0.95	DN 10
27	8.59	45.3	60.3	72.1	90.2	102.5	40	0.95	0.96	DN 10
34	13.62	71.9	95.6	114.4	143.0	162.6	25	0.90	0.94	DN 10
40	18.85	99.5	132.3	158.3	197.9	225.1	18	0.94	0.94	DN 10

Important note:

Abridged presentation of our complete product range. Other types on request $% \left(1\right) =\left(1\right) \left(1\right$

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm		
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm		

Ball valve DN 3 - DN 10

	Suction/ pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 3(double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 15 - DN 20

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 15/DN 20	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

Hydraulic Diaphragm Metering Pump Orlita® **Evolution 2**

2.9.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 2

Maximum process reliability and flexibility.

Capacity range of single pump: 6 - 900 l/h, 400 - 10 bar

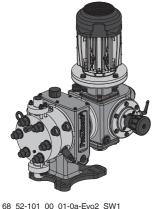
The Orlita® Evolution 2 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 I/h at 400 - 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

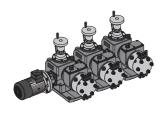
Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation


Excellent flexibility:

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request


Technical details

- Stroke length: 0 15 mm, Rod force: 5,400 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Orlita® Evolution EF2a

P PZ 0008 SW1 Orlita® Evolution triplex pump

2.9 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 2

Technical Data for EF2a Single Pump 50 Hz

Plunger Ø	Stroke volume	Theo	oretical	pump ca	pacity in	l/h at stro	okes/min	(50 Hz)	Max. pressure	Efficiency at		Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
										pressure	pressure	
13	1.99	8	11	13	17	19	21	24	400	0.80	0.80	DN 3
14	2.31	10	13	16	20	22	25	27	362	0.83	0.84	DN 6
18	3.82	16	22	26	33	37	41	46	203	0.85	0.86	DN 6
22	5.70	25	33	39	49	56	61	68	149	0.87	0.90	DN 10
25	7.36	32	42	51	64	72	80	88	114	0.91	0.93	DN 10
29	9.91	43	57	69	86	98	107	119	81	0.95	0.98	DN 10
35	14.43	63	84	100	125	142	156	174	55	0.93	0.95	DN 10
41	19.80	86	115	137	172	196	215	238	40	0.95	0.96	DN 15
52	31.86	139	185	221	277	315	346	384	25	0.97	0.98	DN 15
65	49.77	218	289	346	433	492	540	600	16	0.95	0.97	DN 20
80	75.40	330	438	524	655	746	818	909	10	0.98	0.98	DN 20

Technical Data for EF2a Single Pump 60 Hz

Plunger Ø	Stroke volume	Theoretic	cal pump ca _l	pacity in I/h a	at strokes/m	in (60 Hz)	Max. pressure	Efficiency at		Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/stro-	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	ke							pressure	pressure	
13	1.99	10	14	20	23	26	400	0.80	0.80	DN 3
14	2.31	12	16	24	27	30	362	0.83	0.84	DN 6
18	3.82	20	26	40	45	50	203	0.85	0.86	DN 6
22	5.70	30	40	59	68	74	149	0.87	0.90	DN 10
25	7.36	38	51	77	87	96	114	0.91	0.93	DN 10
29	9.91	52	69	83	104	118	81	0.95	0.98	DN 10
35	14.43	76	101	121	151	172	55	0.93	0.95	DN 10
41	19.80	104	139	166	207	236	40	0.95	0.96	DN 15
52	31.86	168	223	267	334	380	25	0.97	0.98	DN 15
65	49.77	262	349	418	522	594	16	0.95	0.97	DN 20
80	75.40	398	529	633	791	900	10	0.98	0.98	DN 20

Important note:

Abridged presentation of our complete product range. Other types on request

Materials in Contact With the Medium

Dosing head complete

Dosing head	Diaphragm retaining screw	Diaphragm
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm

Ball valve DN 3 - DN 10

	Suction/ pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring
DN 3 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SiN ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4
DN 10 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4

Plate valve DN 15 - DN 20

	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
DN 15/DN 20	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

Further material versions and details available on request.

2.10 Hydraulic Diaphragm Metering Pump Orlita® **Evolution 3**

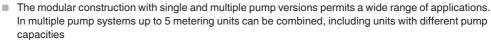
2.10.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 3

Maximum process reliability and flexibility.

Capacity range of single pump: 21 - 1,330 l/h, 400 - 18 bar

The Orlita® Evolution 3 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.


The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 – 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm layer control protects against impermissible operating statuses (e.g. no damage in the event of a blockage on the suction or discharge side)
- Continuous bleeding of the oil chamber ensures reliable operation

Excellent flexibility:

- 7 different gear ratios are available; in single pumps the drive arrangement can be either vertical or horizontal
- Customised designs are available on request

Technical details

- Stroke length: 0 25 mm, Rod force: 8,000 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

P_ORL_063_SW1 Orlita® Evolution EF3a

P PZ 0008 SW1 Orlita® Evolution triplex pump

2.10 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 3

Technical Data for EF3a Single Pump 50 Hz

Plunger Ø	Stroke volume				Theoretic		capacity okes/mir		Max. pressure	Efficiency at		Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
16	5.03	21	29	34	43	49	54	60	400	0.72	0.84	DN 6
17	5.67	24	32	39	49	56	61	68	352	0.75	0.86	DN 6
18	6.36	27	36	44	55	62	69	76	314	0.77	0.87	DN 6
22	9.50	41	55	66	82	93	103	114	210	0.86	0.92	DN 6
25	12.27	53	71	85	106	121	133	148	163	0.86	0.93	DN 10
30	17.67	76	102	122	153	174	192	213	113	0.90	0.93	DN 10
36	25.45	110	147	177	221	251	276	307	78	0.92	0.94	DN 15
42	34.64	150	200	241	301	342	376	418	57	0.93	0.94	DN 15
50	49.09	213	284	341	427	485	533	593	41	0.94	0.95	DN 25
60	70.69	307	409	491	614	698	768	854	27	0.95	0.96	DN 25
70	96.21	418	558	669	837	951	1,046	1,162	21	0.96	0.97	DN 25
75	110.45	480	640	768	960	1,091	1,201	1,334	17	0.97	0.98	DN 25

Technical Data for EF3a Single Pump 60 Hz

Plunger Ø	Stroke volume		٦	Theoretical p	ump capaci strokes/m	•	Max. pressure	Efficiency at		Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
16	5.03	26	35	42	52	59	400	0.72	0.84	DN 6
17	5.67	29	39	47	59	67	352	0.75	0.86	DN 6
18	6.36	33	44	53	66	75	314	0.77	0.87	DN 6
22	9.50	49	66	79	99	113	210	0.86	0.92	DN 6
25	12.27	64	85	103	128	146	163	0.86	0.93	DN 10
30	17.67	92	123	148	185	210	113	0.90	0.93	DN 10
36	25.45	133	178	213	267	303	78	0.92	0.94	DN 15
42	34.64	181	242	290	363	413	57	0.93	0.94	DN 15
50	49.09	257	343	412	515	585	41	0.94	0.95	DN 25
60	70.69	371	494	593	742	843	27	0.95	0.96	DN 25
70	96.21	505	673	808	1,010	1,147	21	0.96	0.97	DN 25
75	110.45	579	773	927	1,159	1,317	17	0.97	0.98	DN 25

Important note:

Dosing head

Abridged presentation of our complete product range. Other types on request

Diaphragm

Materials in Contact With the Medium

Dosing head complete

Diaphragm retaining screw

Stainless steel 1.4404	Stainless	steel 1.4462	1.4462 PTFE multi-layer diaphragm				
	Ball valve	DN 6 – DN 10					
	Suction/pressure connector	Valve/head seal	Valve ball	Valve seat	Valve housing	Clamp ring	
DN 6 (double ball)	Stainless steel 1.4404	Stainless steel 1.4404	SIN	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4	
DN 10 (single ball)	Stainless steel 1.4404	Stainless steel 1.4404	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404	Hastelloy C4	

Plate valve DN 15 - DN 25

		Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing
ĺ	DN 15/DN 25	Stainless steel 1.4404	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4404	Stainless steel 1.4404

2.11 Hydraulic Diaphragm Metering Pump Orlita® Evolution 4

2.11.1

Hydraulic Diaphragm Metering Pump Orlita® Evolution 4

Maximum process reliability and flexibility.

Capacity range of single pump: 55 - 7,400 l/h, 400 - 10 bar

The Orlita® Evolution 4 meets the highest safety requirements as an extremely robust hydraulic diaphragm metering pump. It stands out, thanks to its PTFE multi-layer diaphragm with integral diaphragm rupture warning system and unique diaphragm position control.

The Orlita® Evolution hydraulic diaphragm metering pump range of EF1a, EF2a, EF3a and EF4a form an integrated product range with stroke lengths of 15 to 40 mm. This covers the capacity range of 3 to 7,400 l/h at 400 – 10 bar. A wide range of drive versions is available, including some with ATEX certification for use in Zone 1 or Zone 2 areas at risk from explosion. The Orlita® Evolution product range is designed to comply with API 675.

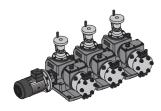
Your benefits

Maximum process reliability:

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve
- The new diaphragm position control protects against operating faults (e. g. no damage in the event of a blockage on the suction or discharge side)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- Continuous bleeding of the hydraulic oil chamber ensures reliable operation

Excellent flexibility:

- The modular compact construction with single and multiple pump versions allows for a wide range of applications, also for multiple pump systems, whereas up to 5 metering units, even with different pump capacities, can be combined.
- 7 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request


Technical details

- Stroke length: 0 40 mm, Rod force: 15,700 N
- Stroke length adjustment: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel 1.4404, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors also for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 675 among others

- Oil and gas industry
- Volume-proportional metering of chemicals/additives in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

68_54-101_00_03-0a-Evo4_SW1
Orlita® Evolution EF4a

P_PZ_0008_SW1
Orlita® Evolution triplex pump

2.11 Hydraulic Diaphragm Metering Pump Orlita[®] Evolution 4

Technical Data for EF4a Single Pump 50 Hz

Plunger Ø	Stroke volume			-	Theoretic		capacity okes/min		Max. pressure	Efficiency at		Standard type of valve
		73 [2]	97 [3]	116 [4]	145 [5]	165 [6]	181 [7]	201 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
20	12.57	55	73	87	109	124	136	151	400	0.71	0.84	DN 15
25	19.63	85	114	136	170	194	213	236	320	0.72	0.85	DN 15
28	24.63	107	143	171	214	243	267	297	275	0.72	0.85	DN 15
30	28.27	123	164	196	245	279	307	340	222	0.73	0.86	DN 20
40	50.27	220	292	349	437	497	545	606	125	0.88	0.91	DN 25
50	78.54	344	457	546	683	777	852	947	80	0.93	0.94	DN 25
60	113.10	495	658	787	983	1,119	1,228	1,363	56	0.94	0.95	DN 32
70	153.94	674	895	1,071	1,339	1,524	1,671	1,856	41	0.95	0.96	DN 32
90	254.47	1,114	1,481	1,771	2,213	2,519	2,763	3,068	25	0.96	0.97	DN 40
110	380.13	1,664	2,212	2,645	3,307	3,763	4,128	4,584	17	0.98	0.98	DN 65
140	615.75	2,696	3,583	4,285	5,357	6,095	6,687	7,425	10	0.99	0.99	DN 65

Technical Data for EF4a Single Pump 60 Hz

Plunger Ø	Stroke volume		Т	heoretical p		ty in I/h at iin (60 Hz)	Max. pressure	Efficiency at		Standard type of valve
		88 [2]	117 [3]	140 [4]	175 [5]	199 [6]				
mm	ml/stro-	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	ke							pressure	pressure	
20	12.57	66	88	105	131	150	400	0.71	0.84	DN 15
25	19.63	103	137	164	206	234	320	0.72	0.85	DN 15
28	24.63	98	130	156	195	221	275	0.72	0.85	DN 15
30	28.27	149	198	237	296	337	222	0.73	0.86	DN 20
40	50.27	265	352	422	527	600	125	0.88	0.91	DN 25
50	78.54	414	551	659	824	937	80	0.93	0.94	DN 25
60	113.10	597	793	950	1,187	1,350	56	0.94	0.95	DN 32
70	153.94	812	1,080	1,293	1,616	1,838	41	0.95	0.96	DN 32
90	254.47	1,343	1,786	2,137	2,671	3,038	25	0.96	0.97	DN 40
110	380.13	2,007	2,668	3,193	3,991	4,538	17	0.98	0.98	DN 65
140	615.75	3,251	4,322	5,172	6,465	7,352	10	0.99	0.99	DN 65

Important note:

Abridged presentation of our complete product range. Other types on request

Diaphragm

Materials in Contact With the Medium

Dosing head complete

Diaphragm retaining screw

Stainless steel 1.4	404 Stainle	ss steel 1.4462	PTFE mul	ti-layer diaphragm			
	Plate va	lve					
	Suction/pressure connector	Valve/head seal	Valve plate	Valve seat	Valve housing		
DN 15 - DN 65	Stainless steel 1 4404	Stainless steel 1 4571	Stainless steel 1 4462	Stainless steel 1 4404	Stainless steel 1 4404		

Further material versions and details available on request.

Dosing head

2.12.1

Hydraulic Diaphragm Metering Pump Orlita® MF

Reliable capacity even at high pressure

Capacity range of single pump: 0 - 13,000 l/h, 700 - 6 bar

The hydraulic diaphragm metering pump Orlita® MF offers reliable capacities even under high pressure and has a modular construction, therefore has versatile uses. Thanks to its modular design, this pump is tailored to meet your requirements even at very high pump capacities.

ORLITA® MF hydraulic diaphragm metering pumps (MFS 18 to MFS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 13,000 l/h at 700 - 6 bar. A wide range of drive versions is available, including some for use in Zone 1 or Zone 2 areas at risk from explosion with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

- PTFE double diaphragm with integrated diaphragm rupture warning system ensures precise and low-wear operation despite high pressures
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)

Excellent flexibility:

- The modular construction allows a wide range of uses. In multiple pump systems it is possible to combine up to 6 metering units, even with different pump capacities. In single pumps the drive arrangement may be either vertical or horizontal.
- 10 different gear ratios are available
- Temperature range -40 to +150 °C
- Customised designs are available on request

Technical details

- MfS 18 (MF1a) Stroke length: 0-15 mm, Rod force: 1,750 N
- MfS 35 (MF2a) Stroke length: 0-20 mm, Rod force: 3,500 N
- MfS 80 (MF3a) Stroke length: 0-20 mm, Rod force: 14,000 N
- MfS 180 (MF4a) Stroke length: 0-40 mm, Rod force: 18,000 N
- MfS 600 (MF5a) Stroke length: 0-40 mm, Rod force: 40,000 N
- MfS 1400 (MF6a) Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 150 °C
- Suction lift up to 8 m
- Design in compliance with API 675 among others

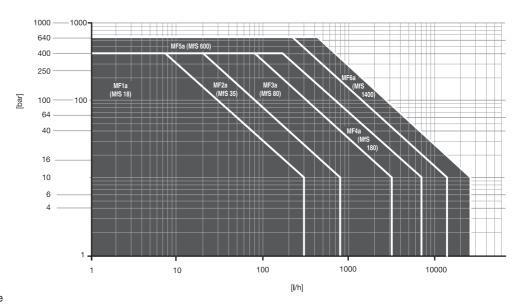
- Oil/ gas production (onshore/offshore)
- Refineries
- × Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)

P_ORL_050_SW1 Orlita® MFS 18/12

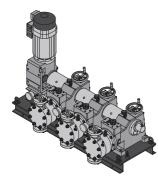
P_ORL_051_SW1 Orlita® MFS 35/30

P ORL 052 SW1 Orlita® MFS 80/40

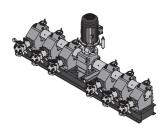
P ORL 053 SW1 Orlita® MFS 180/60



P_ORL_054_SW1 Orlita® MFS 600b/81


P ORL 055 SW1 Orlita® MFS 1400/46

Pressure [bar] depending on the metering volume [l/h] at 50 Hz


Triplex Metering Pumps

P ORL 056 SW1 Orlita® MF3S 180/90-90-90 triplex pump

With triplex metering pumps, the pressure stroke of each liquid end occurs through 120° of crank travel. This results in a metering flow free of pulsation without the use of elaborate pulsation dampers. This design of process diaphragm pump is preferred in the chemical and petrochemical industries.

Multiplexed Metering Pumps

P_ORL_057_SW1 Orlita® MF3S 1400/50 multiple pump

The Orlita® MF range's modular construction permits a variable combination of drives, motors and liquid ends e.g. quadruple MF metering pumps with central drive.

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

P_ORL_058_SW1 Orlita® MFS 18 with 1-phase control drive 115/230 V

P_ORL_059_SW1 Orlita® MFS 35 with 1-phase control drive 115/230 V vertical

P_ORL_060_SW1
Orlita® MFS 180 with 3-phase control drive

P_ORL_061_SW1
Orlita® MFS 35/12-12-12 with control drives

P_ORL_062_SW1 Orlita® MFS 18/7 with Varicon

Actuation of ORLITA® MF, MH, PS, DR

Control drive consisting of an actuator with servo motor and integral servo controller for stroke length adjustment via a standard signal. Standard signal current input 0/4 - 20 mA, corresponds to stroke length 0 - 100%, switch for manual/automatic operation; key switch for stroke adjustment in manual mode, mechanical status display of actual stroke length value output 0/4 - 20 mA for remote display. Control drives can also be designed with bus systems, like HART, PROFIBUS, Fieldbus Foundation ...

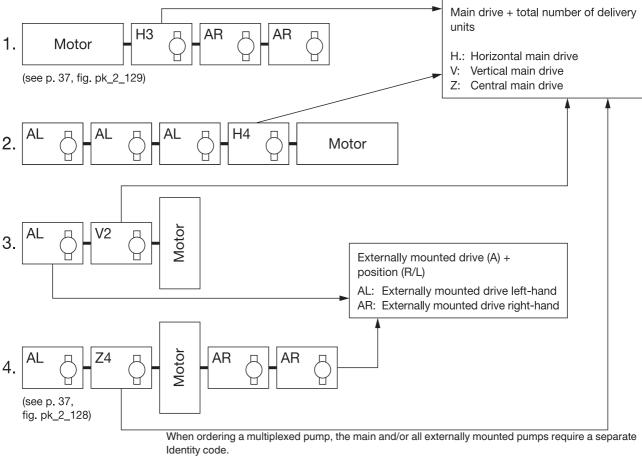
Variable speed motors with integrated frequency converter (identity code specification V)

Power supply 1 ph 230 V, 50/60 Hz (up to 3 kW). Externally controllable with 0/4 - 20 mA.

The following functions are integrated in the terminal box cover:

- Start/stop switch
- Switch for manual/external operation
- Potentiometer for speed control in manual mode

Speed controllers with frequency converter (identity code specification Z)


The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch, suitable for max. 0.37/0.75 kW motor capacity.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Integrated control unit with versatile functions, such as switching between external/internal control; frequency input using arrow keys with internal control, multilingual fault message display etc. and motor temperature monitoring (thermistor protection).

The speed controller assembly consists of a frequency converter and a variable speed motor.

Type of drive

For example a triplex pumpe (1.): MF_aH3......

MF_aAR.....

Materials in Contact With the Medium

	Liquid end	Suction/discharge valve housing	Valve seals	Valve	Valve seat	Range
S1 (DIN)	1.4404	None	1.4571	Ceramic	1.4404	DN 3
S1 (ANSI)	A 316 L	N/A	A 316 Ti	Ceramic	A 316 L	
S1 (DIN)	1.4404	1.4404	1.4571	1.4462	1.4462	≥ DN6
S1 (ANSI)	A 316 L	A 316 L	A 316 Ti	Duplex SS	Duplex SS	
S2 (DIN)	1.4462	1.4462	1.4571	1.4462	1.4462	≥ DN6
S2 (ANSI)	Duplex SS	Duplex SS	A 316 Ti	Duplex SS	Duplex SS	
S3 (DIN)	1.4539	1.4539	2.4610	1.4539	1.4539	≥ DN6
S3 (ANSI)	A904L	A904L	Hastelloy C-4	A904L	A904L	

Motor Data

Α	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
B (adjustable 1:5)	50 Hz	3 ph. 230/400 V	3 ph. 500 V	3 ph. 380/660 V
		3 ph. 400/690 V	3 ph. 415 V	
Н	60 Hz	3 ph. 220/380 V	3 ph. 400 V	
K (adjustable 1:5)	60 Hz	3 ph. 220/380 V	3 ph. 400 V	

2.12.2

Orlita® MFS 18 (MF1a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 18 Single Pump 50 Hz

Plunger Ø	Stroke volume			•		Q _{th} in I/h բ ode chara			Max. pressure	Ef	ficiency at	Standard type of valve
		45 [3]	58 [4]	73 [5]	91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
7	0.58	1.5	2.0	2.5	3.1	3.8	5.0	7.1	400	0.50	0.70	DK DN 3
8	0.75	2.0	2.6	3.2	4.1	5.0	6.5	9.3	348	0.55	0.72	DK DN 3
10	1.18	3.2	4.1	5.1	6.4	7.8	10.2	14.6	222	0.67	0.79	Ke DN 6
11	1.43	3.8	4.9	6.2	7.7	9.5	12.4	17.7	184	0.67	0.79	Ke DN 6
12	1.70	4.6	5.9	7.3	9.2	11.3	14.7	21.0	154	0.84	0.88	Ke DN 6
14	2.31	6.2	8.0	10.0	12.5	15.4	20.0	28.7	113	0.85	0.88	Ke DN 6
16	3.02	8.2	10.5	13.1	16.4	20.1	26.2	37.4	87	0.86	0.88	Ke DN 6
18	3.82	10.3	13.2	16.6	20.7	25.5	33.2	47.4	68	0.87	0.88	Ke DN 6
20	4.71	12.8	16.4	20.5	25.6	31.5	41.0	58.5	55	0.88	0.89	Ke DN 6
22	5.70	15.5	19.8	24.8	31.0	38.1	49.6	70.8	46	0.88	0.89	Ke DN 10/6
25	7.36	20.0	25.6	32.0	40.0	49.2	64.0	91.5	35	0.89	0.89	Ke DN 10
27	8.59	23.3	29.8	37.3	46.7	57.4	74.7	106.7	30	0.89	0.89	Ke DN 10
29	9.91	26.9	34.4	43.1	53.8	66.3	86.2	123.1	26	0.89	0.89	Ke DN 10
30	10.60	28.8	36.9	46.1	57.6	70.9	92.2	131.7	24	0.89	0.89	Ke DN 10
36	15.27	41.5	53.1	66.4	83.0	102.1	132.8	189.7	17	0.89	0.89	Ke DN 16
40	18.85	51.2	65.6	82.0	102.4	126.1	163.9	234.2	13	0.89	0.89	Ke DN 16
44	22.81	62.0	79.3	99.2	124.0	152.6	198.4	283.4	11	0.89	0.90	Ke DN 16
50	29.45	80.0	102.4	128.1	160.1	197.1	256.2	366.0	8	0.89	0.90	Ke DN 16

Technical Data MfS 18 Single Pump 60 Hz

Plunger Ø	Stroke volume			-		Q _{th} in I/h ր ode char			Max. pressure	Ef	ficiency at	Standard type of valve
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.58	1.5	1.9	2.4	3.0	3.8	4.6	6.1	400	0.50	0.70	DK DN 3
8	0.75	1.9	2.4	3.1	3.9	4.9	6.1	7.9	348	0.55	0.72	DK DN 3
10	1.18	3.1	3.8	4.9	6.2	7.7	9.5	12.4	222	0.67	0.79	Ke DN 6
11	1.43	3.7	4.7	6.0	7.5	9.4	11.5	15.0	184	0.67	0.79	Ke DN 6
12	1.70	4.4	5.6	7.1	8.9	11.2	13.7	17.9	154	0.84	0.88	Ke DN 6
14	2.31	6.1	7.6	9.7	12.1	15.2	18.7	24.3	113	0.85	0.88	Ke DN 6
16	3.02	7.9	9.9	12.7	15.9	19.9	24.5	31.8	87	0.86	0.88	Ke DN 6
18	3.82	10.0	12.6	16.1	20.1	25.1	31.0	40.3	68	0.87	0.88	Ke DN 6
20	4.71	12.4	15.5	19.9	24.8	31.1	38.2	49.7	55	0.88	0.89	Ke DN 6
22	5.70	15.0	18.8	24.0	30.1	37.6	46.3	60.2	46	0.88	0.89	Ke DN 10/6
25	7.36	19.4	24.3	31.1	38.8	48.6	59.8	77.7	35	0.89	0.89	Ke DN 10
27	8.59	22.6	28.3	36.2	45.3	56.6	69.7	90.6	30	0.89	0.89	Ke DN 10
29	9.91	26.1	32.7	41.8	52.3	65.3	80.4	104.6	26	0.89	0.89	Ke DN 10
30	10.60	27.9	34.9	44.7	55.9	69.9	86.1	111.9	24	0.89	0.89	Ke DN 10
36	15.27	40.3	50.3	64.4	80.6	100.7	124.0	161.2	17	0.89	0.89	Ke DN 16
40	18.85	49.7	62.2	79.6	99.5	124.4	153.1	199.0	13	0.89	0.89	Ke DN 16
44	22.81	60.2	75.2	96.3	120.1	150.5	185.2	240.8	11	0.89	0.90	Ke DN 16
50	29.45	77.7	97.1	124.4	155.5	194.3	239.2	311.0	8	0.89	0.90	Ke DN 16

DK Double ball valve, Ke Conical valve

Abridged presentation of our complete product range. Other types on request

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System

Orlita® MFS18 (MF1a) hydraulic diaphragm metering pump

MF1a	Drive t																	
	V1	Main d	rive vert															
	Z1		rive cen															
	AL			eft-hand														
	AR			ight-han	d													
	M	Modifie																
			er diamo	eter	011	11		016	10		000	00		000	00	,	240	40
		007	7 mm		011	11 mm		016	16 mm		022	22 mm		029	29 mm		040	40 mm
		008 010	8 mm 10 mm		012	12 mm		018	18 mm		025	25 mm		030	30 mm)44)50	44 mm
		010			014	14 mm -		020	20 mm		027	27 mm		036	36 mm	,	050	50 mm
			2	rate 50	okes/mi		4	58 (70) Strokes	/min	6	91 (110	0) Stroke	as/min	8	145 (176	S) Stro	kos/min
			3		strokes		5) Strokes		7	•	35) Strol			207 (-) S	,	
				, ,					e materi		,	112(10	50) 01101	100/111111		201 () 0	, ti Oitoc	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				S1			(see tal			iui3)								
							of pum		,									
					0		to 80 °0			2	-40 °C	to 60 °C	0		4	10 °C to	150°	С
					1	-25 °C	to 60 °C	0		3	10 °C	to 115 °	С					
						Displa	cer for	mat										
						0	PTFE r	multi-lay	er diaph	ragm								
						1	PTFE r	multi-lay	er diaph	ragm w	th press	sure gau	ige					
								end ve										
							0	Standa						2		rd double		
							1		ard with s					3	Standa	rd double	valve	with spring
									ulic con			n side		^	F1-	ANICI		
								G		DIN/IS				A D	Flange			
								N		NPT/A					Flange	DIN/ISO		
									G		DIN/IS	n discha ○	arge sid	A A	Flange	ANISI		
									N		NPT/A			D	-	DIN/ISO		
										Versio		1101			riango	Dirtyioo		
										0	no feat	tures						
										1		end hea	ting					
										2	Liquid	end polis	shed					
										3	Specia	ıl paint fi	nish					
												connec						
											Α		ard volta					
											В			-	z adjusta	able		
											Н		ard volta	-				
											K				z adjusta	able		
											0		ally mou					
											2		t motor v		MA flang	0		
											_						ion n	otection
												0	IP 55	lection	System		P 55 E	
												1	IP 56				P 56 E	
												A	IP 55 E	Exn			P 56 E	
												В	IP 55 E	Exe		F I	P 56 E	Exde
													Electri	ical opt	ions			
													0	no opti	ions			
													1		sensor			
																adjustm	ent	
														0	manua			
														1		mA witho		
														2		mA Ex Zo		
														3		mA Ex Zo		offobors
														4 5		mA witho		
														6		ma ex zo ma ex zo		
														· ·		nmental		
															0	-20 °C to		
															1	-40 °C to		
															2	0 °C to 5		-
															I	Approv		
																	CE	
			1		1												API 67	5
							1	1		ı	ı	1	1	l	1			
																2 '	VDMA	
																	VDMA ATEX	
																3	ATEX	/ API 675
																3 4	ATEX ATEX	

^{*}For other pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified version (M) is possible for each ID character of the identity code.

2.12.3

Orlita® MFS 35 (MF2a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 35 Single Pump 50 Hz

Plunger Ø	Stroke volume					Q _{th} in I/h code chai			Max. pressure	Ef	ficiency at	Standard type of valve
		45 [3]	58 [4]		91 [6]	112 [7]	145 [8]	207 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.6	3.3	4.1	5.1	6.7	9.5	400	0.50	0.70	DK DN 3
8	1.01	2.7	3.5	4.3	5.4	6.7	8.7	12.4	400	0.50	0.70	DK DN 3
10	1.57	4.2	5.4	6.8	8.5	10.5	13.6	19.5	400	0.50	0.70	Ke DN 6
11	1.90	5.1	6.6	8.2	10.3	12.7	16.5	23.6	368	0.79	0.85	Ke DN 6
12	2.26	6.1	7.8	9.8	12.3	15.1	19.6	28.1	309	0.79	0.85	Ke DN 6
14	3.08	8.3	10.7	13.3	16.7	20.6	26.7	38.2	227	0.81	0.85	Ke DN 6
16	4.02	10.9	13.9	17.4	21.8	26.9	34.9	49.9	174	0.83	0.86	Ke DN 6
18	5.09	13.8	17.7	22.1	27.6	34.0	44.2	63.2	137	0.84	0.87	Ke DN 6
20	6.28	17.0	21.8	27.3	34.1	42.0	54.6	78.0	111	0.86	0.88	Ke DN 6
22	7.60	20.6	26.4	33.0	41.3	50.8	66.1	94.4	92	0.86	0.88	Ke DN 10/6
25	9.82	26.6	34.1	42.7	53.3	65.7	85.4	122.0	71	0.87	0.88	Ke DN 10
27	11.45	31.1	39.8	49.8	62.2	76.6	99.6	142.3	61	0.87	0.88	Ke DN 10
30	14.14	38.4	49.2	61.5	76.8	94.6	122.9	175.7	49	0.88	0.89	Ke DN 10
36	20.36	55.3	70.8	88.5	110.6	136.2	177.1	253.0	34	0.88	0.89	Ke DN 16
40	25.13	68.3	87.4	109.3	136.6	168.2	218.6	312.3	27	0.89	0.89	Ke DN 16
44	30.41	82.6	105.8	132.2	165.3	203.5	264.5	377.9	23	0.89	0.89	Ke DN 16
50	39.27	106.7	136.6	170.8	213.5	262.8	341.6	488.0	17	0.89	0.89	Ke DN 16
60	56.55	153.7	196.7	245.9	307.4	378.4	491.9	702.8	12	0.89	0.90	Ke DN 16/25
65	66.37	180.4	230.9	288.6	360.8	444.1	577.3	824.8	10	0.89	0.90	Ke DN 16/25
80	100.53	273.3	349.8	437.3	546.6	672.7	874.6	1,249.4	6	0.89	0.90	Ke DN 25

Technical Data MfS 35 Single Pump 60 Hz

Plunger	Stroke	Pump	capacity	/ Q _{th} in I	/h per pı	ump head	l at H/min	Identity	Max.	Ef	ficiency at	Standard
Ø	volume				c	code char	acteristic	[2 to 8]:	pressure			type of valve
		44 [2]	55 [3]	70 [4]	88 [5]	110 [6]	135 [7]	176 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
7	0.77	2.0	2.5	3.2	4.0	5.0	6.2	8.1	400	0.50	0.70	DK DN 3
8	1.01	2.6	3.3	4.2	5.3	6.6	8.1	10.6	400	0.50	0.70	DK DN 3
10	1.57	4.1	5.1	6.6	8.2	10.3	12.7	16.5	400	0.50	0.70	Ke DN 6
11	1.90	5.0	6.2	8.0	10.0	12.5	15.4	20.0	368	0.79	0.85	Ke DN 6
12	2.26	5.9	7.4	9.5	11.9	14.9	18.3	23.8	309	0.79	0.85	Ke DN 6
14	3.08	8.1	10.1	13.0	16.2	20.3	25.0	32.5	227	0.81	0.85	Ke DN 6
16	4.02	10.6	13.2	16.9	21.2	26.5	32.6	42.4	174	0.83	0.86	Ke DN 6
18	5.09	13.4	16.7	21.5	26.8	33.5	41.3	53.7	137	0.84	0.87	Ke DN 6
20	6.28	16.5	20.7	26.5	33.1	41.4	51.0	66.3	111	0.86	0.88	Ke DN 6
22	7.60	20.0	25.0	32.1	40.1	50.1	61.7	80.2	92	0.86	0.88	Ke DN 10/6
25	9.82	25.9	32.4	41.4	51.8	64.8	79.7	103.6	71	0.87	0.88	Ke DN 10
27	11.45	30.2	37.7	48.3	60.4	75.5	93.0	120.9	61	0.87	0.88	Ke DN 10
30	14.14	37.3	46.6	59.7	74.6	93.3	114.8	149.2	49	0.88	0.89	Ke DN 10
36	20.36	53.7	67.1	85.9	107.4	134.3	165.3	214.9	34	0.88	0.89	Ke DN 16
40	25.13	66.3	82.9	106.1	132.7	165.8	204.1	265.4	27	0.89	0.89	Ke DN 16
44	30.41	80.2	100.3	128.4	160.5	200.7	247.0	321.1	23	0.89	0.89	Ke DN 16
50	39.27	103.6	129.5	165.8	207.3	259.1	318.9	414.6	17	0.89	0.89	Ke DN 16
60	56.55	149.2	186.6	238.8	298.5	373.2	459.3	597.1	12	0.89	0.90	Ke DN 16/25
65	66.37	175.2	219.0	280.3	350.4	438.0	539.1	700.8	10	0.89	0.90	Ke DN 16/25
80	100.53	265.4	331.7	424.6	530.8	663.5	816.6	1,061.6	6	0.89	0.90	Ke DN 25

DK Double ball valve, Ke Conical valve

- Important note: Abridged presentation of our complete product range. Other types on request
 - Allow for a minimum 10% power reserve when designing in accordance with API
 - All hydraulic performance data is based on water at 20 °C

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS35 (MF2a) hydraulic diaphragm metering pump

MF2a	Drive t																	
	V1	Main d							AR			ight-han	ıd					
	Z1		rive cen						M	Modifie	ed **							
	AL			eft-hand	·													
			er diam	eter	010	10		000	00		000	20		050	FO			
		007 008	7 mm 8 mm		012 014	12 mm		020 022	20 mm 22 mm		030 036	30 mm 36 mm		050 060	50 mm 60 mm			
		010	10 mm		014	14 mm		025	25 mm		040	40 mm		065	65 mm			
		010	11 mm		018	18 mm		023	27 mm		040	44 mm		080	80 mm			
		011) (60) H			021	27 111111		044	44 111111		000	00 111111			
			2		okes/mi		4	58 (70)	Strokes	s/min	6	91 (110)) Strok	es/min	8	145 (17	76) Strokes/min	
			3		strokes		5	. ,	Strokes		7			kes/min			Strokes/min	
				, ,	end ma			. ,			•	(30, 00				3 0.1.00,11	
				S1			(see tal			,								
							of pum											
					0		to 80 °C		2	-40 °C	to 60 °C	0	4	10 °C	to 150 °	С		
					1	-25 °C	to 60 °C		3	10 °C	to 115 °	С						
						Displa	cer for	nat										
						0			er diaph									
						1				ragm w	ith press	sure gau	ge					
								end ve										
							0	Standa					2		ard + dou			
							1		rd with				3	Standa	ard + dou	uble valv	e with spring	
									ulic con			n side		,	F.	41101		
								G		DIN/IS				A	Flange		_	
								N					. .	D	Flange	DIN/ISC)	
									Hydra i G		i nectioi I DIN/IS	n discha	arge sid	d e A	Flange	ANICI		
									N		I NPT/A			D		DIN/ISC	<u> </u>	
									14	Versio		INOI		U	rialiye	DIIVISC	<i></i>	
										0	no feat	ures						
										1		end hea	tina					
										2		end poli	_					
										3		l paint fi						
											-	connec						
											A			ge 50 H	z			
											В			_	z adjusta	able		
											Н			ge 60 H				
											K	Standa	ırd volta	ge 60 H	z adjusta	able		
											0	Externa	ally mou	ınted pu	mp			
											1	without	t motor v	with IEC	flange			
											2	without	t motor v	with NEI	MA flang	e		
														tection	system	/ explo	sion protection	
												0	IP 55			D	IP 56 EExn	
												1	IP 56			E	IP 56 EExe	
												A	IP 55 E			F	IP 56 EExde	
												В	IP 55 E			K	IP 65 EExde	
												С	IP 55 E					
													Electri 0	no opti				
													1		sensor			
													'		elength	adiustr	mont	
														O O	Imanua		nent	
														1		ı mA with	out Ex	
														2		mA Ex 2		
1														3		mA Ex 2		
														4			out EX offshore	
														5			Zone 2 offshore	
														6			Zone 1 offshore	
1				1							1		1	1			al conditions	
															0		to 40 °C	
															1		to 40 °C	
				1							1		1	1	2	0 °C to		
															I ⁻	Appro		
1				1							1		1	1		0	ICE	
																1	API 675	
																2	VDMA	
1				1							1		1	1		3	ATEX	
																4	ATEX / API 675	
																5	VDMA / ATEX	
					+- (· ·		-								

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

0 0 1-1-

^{**} Modified design (M) is available with every identity code feature

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

2.12.4

Orlita® MFS 80 (MF3a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 80 Single Pump 50 Hz

Plunger Ø	Stroke volume		ı	•			er pump eteristic [Max. pressure	Ef	ficiency at	Standard type of valve
		104 [4]	122 [5]	134 [6]	155 [7]	160 [8]	182 [9]	193 [F]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
16	4.02	25	29	32	37	38	43	46	400	0.75	0.83	Ke DN 6
20	6.28	39	46	50	58	60	68	72	400	0.75	0.83	Ke DN 6
22	7.60	47	55	61	70	73	82	87	360	0.79	0.80	Ke DN 10/6
25	9.82	61	71	79	91	94	107	113	285	0.79	0.85	Ke DN 10
27	11.45	71	83	92	106	109	125	132	244	0.81	0.85	Ke DN 10
29	13.21	82	96	106	122	126	144	152	211	0.82	0.85	Ke DN 10
30	14.14	88	103	113	131	135	154	163	198	0.83	0.86	Ke DN 10
36	20.36	126	149	164	189	195	222	235	137	0.85	0.87	Ke DN 16
40	25.13	156	184	202	233	241	274	290	111	0.86	0.88	Ke DN 16
44	30.41	189	222	245	282	292	331	351	98	0.86	0.88	Ke DN 16
46	33.24	207	243	268	309	319	362	384	84	0.86	0.88	Ke DN 16
50	39.27	244	287	316	365	377	428	453	71	0.87	0.88	Ke DN 16
60	56.55	352	414	455	526	543	617	653	50	0.88	0.89	Ke DN 16/25
65	66.37	413	486	535	617	637	724	766	40	0.88	0.89	Ke DN 16/25
80	100.53	626	736	810	935	965	1,097	1,161	25	0.89	0.89	Ke DN 25
100	157.08	979	1,150	1,266	1,461	1,508	1,714	1,814	17	0.89	0.89	Ke DN 32

Technical Data MfS 80 Single Pump 60 Hz

Plunger Ø	Stroke volume			-	apacity Q dentity co				Max. pressure	Ef	ficiency at	Standard type of valve
mm	ml/ stroke	119 [3] l/h	126 [4] l/h	148 [5] l/h	163 [6] l/h	188 [7] l/h	194 [8] l/h	221 [9] l/h	bar	100% pressure	50% pressure	
16	4.02	28	30	35	39	45	46	53	400	0.75	0.83	Ke DN 6
20	6.28	44	47	55	61	70	73	83	400	0.75	0.83	Ke DN 6
22	7.60	54	57	67	74	85	88	100	360	0.79	0.80	Ke DN 10/6
25	9.82	70	74	87	96	110	114	130	285	0.79	0.85	Ke DN 10
27	11.45	81	86	101	112	129	133	151	244	0.81	0.85	Ke DN 10
29	13.21	94	100	117	129	149	153	175	211	0.82	0.85	Ke DN 10
30	14.14	101	107	125	138	159	164	187	198	0.83	0.86	Ke DN 10
36	20.36	145	154	180	199	229	237	269	137	0.85	0.87	Ke DN 16
40	25.13	179	190	223	245	283	292	333	111	0.86	0.88	Ke DN 16
44	30.41	217	230	270	297	343	354	402	98	0.86	0.88	Ke DN 16
46	33.24	237	251	295	325	375	387	440	84	0.86	0.88	Ke DN 16
50	39.27	280	297	349	384	443	457	520	71	0.87	0.88	Ke DN 16
60	56.55	404	428	502	553	638	659	749	50	0.88	0.89	Ke DN 16/25
65	66.37	474	502	589	649	749	773	879	40	0.88	0.89	Ke DN 16/25
80	100.53	718	761	893	983	1,134	1,171	1,332	25	0.89	0.89	Ke DN 25
100	157.08	1,123	1,189	1,396	1,537	1,774	1,830	2,081	17	0.89	0.89	Ke DN 32

Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

■ Allow for a minimum 10% power reserve when designing in accordance with API

All hydraulic performance data is based on water at 20 °C

ss Metering Pumps

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS 80 (MF3a) hydraulic diaphragm metering pump

H1 Main drive horizontal*	MF3a E	Drive t	vpe																
V1				rive hori	zontal*							AL	Drive m	nodule l	eft-hand				
Plunger clameter	V	V1	Main d	rive vert	ical*							AR	Drive m	nodule r	ight-han	d			
0016	Z	Z1	Main d	rive cen	tral*							M	Modifie	ed **	_				
020 20 mm 027 27 mm 036 36 mm 046 48 mm 065 65 mm 029 28 mm 040 40 mm 055 65 mm 080 80 mm 80 80 mm 80 80			Plunge	er diam	eter														
Stroke rate 50 (60) ftz 122 (148) Strokes/min 5 155 (188) Strokes/min 9 182 (221) strokes/min 6 134 (163) Strokes/min 6 134 (163) Strokes/min 8 150 (194) Strokes/min 9 182 (221) strokes/min 1 10 (126) strokes/min 6 134 (163) Strokes/min 8 150 (194) Strokes/min F 193 () Strokes/min 1 10 °C to 150 °C 2 -40 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 2 -40 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 3 10 °C to 115 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 60 °C 4 10 °C to 150 °C 1 -25 °C to 150 °C 2 -25 °C			016	16 mm		025	25 mm		030	30 mm		044	44 mm		060	60 mm		100	100 mm
Stroke rate 50 (60) ftz			020	20 mm		027	27 mm		036	36 mm		046	46 mm		065	65 mm			
1			022	22 mm		029	29 mm		040	40 mm		050	50 mm		080	80 mm			
104 (126) strokes/min 6				Stroke	rate 50	(60) H	z												
Standard steel (see table, sheet 2) Temperature of pumped medium 0 - 10 **C to 180 **C 2 - 40 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 3 - 10 **C to 115 **C 1 - 25 **C to 60 **C 3 - 10 **C to 115 **C 1 - 25 **C to 60 **C 3 - 10 **C to 115 **C 1 - 25 **C to 60 **C 3 - 10 **C to 115 **C 1 - 25 **C to 60 **C 3 - 10 **C to 115 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 60 **C 4 - 10 **C to 150 **C 1 - 25 **C to 150 **C 1 - 25 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to 150 **C 2 - 20 **C to 10 **C to				3	- (119)	Strokes	/min	5	122 (1	48) Strok	kes/min	7	155 (18	38) Stro	kes/min	9	182 (22	21) stro	kes/min
Stanless steel (see table, sheet 2) Temperature of pumped medium 0				4	104 (12	26) strok	ces/min	6	134 (10	63) Strok	kes/min	8	160 (19	94) Stro	kes/min	F	193 (-)	Stroke	s/min
Temperature of pumped medium					Liquid	end ma	aterial (includir	ng valv	e materi	als)								
1					S1	Stainle	ss steel	(see tab	ole, she	et 2)									
1						Tempe				dium									
Displacer format O PTEF multi-layer diaphragm						0										4	10 °C	to 150 °	C
1 PTFE multi-layer diaphragm with pressure gauge Liquid end version 0 Standard of Ustandard obuble valve valve standard obuble valve valve standard obuble valve valve standard obuble valve val						1			_		3	10 °C	to 115 °	С					
TFE multi-layer diaphragm with pressure gauge Liquid end version Standard Standard with spring Standard + double valve Standard + double valve with spring Hydraulic connection suction side G Thread DIN/ISO																			
Liquid end version 0 Standard 1 Standard + double valve 3 Standard + double valve with spring Hydraulic connection suction side G Thread NPT/ANS											-								
0 Standard vith spring 2 Standard + double valve 3 Standard + double valve 4 Standard + double valve 5 Standard + double valve 8 Standard + double valve 9 Standard valve 60 Hz 9 Standard valve 60 Hz 1 Without motor with NEMA flange 1 Standard valve 60 Hz 1 Standar							1				ragm wi	th press	sure gau	ge					
1 Standard + double valve Standard + double valve with spring																			
Standard + double valve with spring Hydraulic connection suction side G Thread DINI/SO A Flange DINI/SO Hydraulic connection discharge side G Thread DINI/SO A Flange DINI/SO Hydraulic connection discharge side G Thread OPI/ANSI D Flange DINI/SO Version U Infraed of NPT/ANSI D Flange DINI/SO Version U In of eatures 1 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz Standard voltage 50 Hz adjustable H Standard voltage 60 Hz adjustable Externally mounted pump 1 without motor with NEMA flange Electrical protection system / explosion protect D IP 55 D IP 55 D IP 55 D IP 55 C IP 55 EExe K IP 66 C IP 55 EExe K IP 67 C IP 55								-											
Hydraulic connection suction side G Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread NPT/ANSI D Flange DIN/ISO Hydraulic connection discharge side G Thread NPT/ANSI D Flange DIN/ISO Version 0 no features 1 Liquid end polished 3 Special paint finish Power connector A Standard voltage 50 Hz B Standard voltage 50 Hz K Standard voltage 50 Hz K Standard voltage 50 Hz K Standard voltage 60 Hz Without motor with IEC flange 2 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion protect 0 IP 55 I IP 55 EExe E IP 55 A IP 55 EExe F IP 5 B IP 55 EExe K IP 6 C IP 64-20 mA Ex Zone 2 offshold A QA-20 mA Ex Zone 2 offshold C Approvals C In IP 60 QA-20 mA Ex Zone 2 offshold C IP 60 QA-20 mA Ex Zone 2 of																			
G								3											
N													n side		^	Flance	ANICI		
Hydraulic connection discharge side G Thread DINISO A Flange ANSI N Thread NPT/ANSI D Flange DINISO Version 0 no features 1 Liquid end heating 2 Liquid end polished 3 Sepecial paint finish Power connector A Standard voltage 50 Hz Adjustable H Standard voltage 60 Hz Adjustable H Standard voltage 60 Hz Adjustable C Stefandard pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion protect 0 IP55 1 IP56 E IP5 A I IP55 EExe K IP6 C IP55 EExe K IP6 C IP55 EExe K IP6 Electrical options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA ex Zone 2 3 0/4-20 mA ex Zone 2 3 0/4-20 mA ex without Ex Of 5 0 0/4-20 mA ex without Ex Of 5 0/4-20 mA ex Zone 2 offshole Environmental conditions 0 0 0/20 °C to 40 °C 0/20 mA ex Zone 1 offshole Environmental conditions 0 1 0/9 °C to 40 °C 0/20 mA ex Zone 1 offshole Environmental conditions 0 1 0/9 °C to 40 °C 0/20 mA ex Zone 1 offshole Environmental conditions																_		_	
Ca									IN					•		riange	סוואוס	,	
N Thread NPT/ANSI D Flange DIN/ISO														arge sid		Elongo	ANICI		
Version																		_	
1										14			IVOI		D	riange	סוועום	,	
1													uroc						
Liquid end polished Special paint finish														tina					
Special paint finish Power connector														•					
Power connector																			
A Standard voltage 50 Hz B Standard voltage 60 Hz adjustable H Standard voltage 60 Hz K Standard voltage 60 Hz adjustable Externally mounted pump without motor with IEC flange without motor with IEC flange without motor with NEMA flange											Ü								
B															ae 50 H	z			
H Standard voltage 60 Hz Standard voltag															-		able		
K Standard voltage 60 Hz adjustable Externally mounted pump 1 without motor with IEC flange 2 without motor with NEMA flange Electrical protection system / explosion protect 0															_				
1												K			_		able		
Without motor with NEMA flange Electrical protection system / explosion protection P 55												0			_				
Electrical protection system / explosion protection P 55												1		-					
1												2	without	t motor	with NE	MA flang	е		
1																		sion p	rotection
A IP 55 EExn F IP 56 B IP 55 EExe K IP 68 C IP 55 EExe K IP 68 Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without Ex 2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without EX off 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																,		•	IP 56 EExn
B IP 55 EExe K IP 6: C IP 55 EExde Electrical options 0 no options 1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without Ex 2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex Zone 2 offsho 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals													1	IP 56			E		IP 56 EExe
C IP 55 EExde Electrical options 0													Α				F		IP 56 EExde
Electrical options																	K		IP 65 EExde
0													С	IP 55 E	Exde				
1 Stroke sensor Stroke length adjustment 0 manual 1 0/4-20 mA without Ex 2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex Zone 2 offsho 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																			
Stroke length adjustment 0 manual 1 0/4-20 mA without Ex 2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without EX off 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																			
0 manual 1 0/4-20 mA without Ex 2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex Zone 1 5 0/4-20 mA Ex without EX off 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals														1					
1 0/4-20 mA without Ex 2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex Without EX off 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																		nent	
2 0/4-20 mA Ex Zone 2 3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex Zone 2 offsho 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals															-				
3 0/4-20 mA Ex Zone 1 4 0/4-20 mA Ex without EX off 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																			
4 0/4-20 mA Ex without EX off 5 0/4-20 mA Ex Zone 2 offsho 6 0/4-20 mA Ex Zone 1 offsho Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																			
5																			EV " !
6 0/4-20 mA Ex Zone 1 offshore Environmental conditions 0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals																	—		
Environmental conditions 0			1				1	1	1				1	Ī					
0 -20 °C to 40 °C 1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals			1				1	1	1				1	Ī	6				
1 -40 °C to 40 °C 2 0 °C to 55 °C Approvals			1				1	1	1				1	Ī					
2 0 °C to 55 °C Approvals																· ·			
Approvals																			ز
																2			
, , , , , , , , , , , , , , , , , , ,																			
																	-		
																	-		
2 VDMA																			
3 ATEX			1				1	1	1				1	Ī					
4 ATEX/API			1				1	1	1				1	Ī					
5 VDMA/ATE																	5	VDMA	A/ ATEX
*For further pump configurations see Type of drive page → 2-51																			

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.12.5

Orlita® MFS 180 (MF4a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 180 Single Pump 50 Hz

Plunger Ø	Stroke volume		ŀ	-	pacity Q entity co				Max. pressure	Ef	ficiency at	Standard type of valve
		92 [4]	107 [5]	117 [6]	134 [7]	152 [8]	171 [9]	200 [F]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
25	19.63	107	126	138	157	178	201	235	366	0.77	0.83	Ke DN 16
30	28.27	155	181	199	226	257	290	339	254	0.81	0.85	Ke DN 16
36	40.72	223	262	286	326	370	417	489	176	0.83	0.86	Ke DN 16
40	50.27	276	323	353	403	457	515	604	143	0.85	0.87	Ke DN 25
44	60.82	334	391	428	488	553	623	730	118	0.85	0.87	Ke DN 25
50	78.54	431	505	552	630	714	805	943	91	0.86	0.88	Ke DN 25
55	95.03	521	611	668	762	864	974	1,141	75	0.87	0.88	Ke DN 32
60	113.10	621	727	796	907	1,029	1,160	1,359	63	0.87	0.89	Ke DN 32
65	132.73	729	854	934	1,065	1,207	1,361	1,594	54	0.88	0.89	Ke DN 32
70	153.94	845	990	1,083	1,235	1,400	1,579	1,849	46	0.88	0.89	Ke DN 40
75	176.71	970	1,137	1,243	1,418	1,608	1,812	2,123	40	0.88	0.89	Ke DN 40
80	201.06	1,104	1,293	1,415	1,613	1,829	2,062	2,416	35	0.88	0.89	Ke DN 40
85	226.98	1,246	1,460	1,597	1,821	2,065	2,328	2,727	31	0.88	0.89	Ke DN 40
90	254.47	1,397	1,637	1,791	2,042	2,315	2,610	3,057	28	0.89	0.89	Ke DN 40
95	283.53	1,557	1,824	1,995	2,275	2,590	2,908	3,407	25	0.89	0.89	Pt DN 50
100	314.16	1,725	2,021	2,211	2,521	2,858	3,223	3,775	22	0.89	0.89	Pt DN 50
115	415.48	2,281	2,673	2,924	3,334	3,781	4,262	4,992	17	0.89	0.89	Pt DN 65
125	490.87	2,696	3,158	3,455	3,939	4,467	5,036	-	14	0.89	0.90	Pt DN 65
135	572.56	3,144	3,684	4,030	4,595	5,210	5,874	6,880	12	0.89	0.90	Pt DN 65
142	633.47	3,479	4,076	4,458	5,084	5,764	6,499	7,612	11	0.89	0.90	Pt DN 65

Technical Data MfS 180 Single Pump 60 Hz

Plunger Ø	Stroke volume			-		Q _{th} in I/h p code char			Max. pressure	Ef	ficiency at	Standard type of valve
		98 [3]	111 [4]	130 [5]	142 [6]	162 [7]	184 [8]	208 [8]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
25	19.63	116	130	153	167	216	244	244	352	0.77	0.83	Ke DN 16
30	28.27	167	188	220	241	275	312	352	254	0.81	0.85	Ke DN 16
36	40.72	240	271	318	347	396	449	507	176	0.83	0.86	Ke DN 16
40	50.27	297	335	392	429	489	555	625	143	0.85	0.87	Ke DN 25
44	60.82	359	405	475	519	592	671	757	118	0.85	0.87	Ke DN 25
50	78.54	464	523	613	671	765	867	978	91	0.86	0.88	Ke DN 25
55	95.03	561	633	742	811	925	1,049	1,183	75	0.87	0.88	Ke DN 32
60	113.10	668	753	883	966	1,101	1,249	1,408	63	0.87	0.89	Ke DN 32
65	132.73	784	884	1,036	1,134	1,293	1,466	1,652	54	0.88	0.89	Ke DN 32
70	153.94	909	1,026	1,202	1,315	1,499	1,700	1,916	46	0.88	0.89	Ke DN 40
75	176.71	1,044	1,178	1,380	1,509	1,721	1,951	2,200	40	0.88	0.89	Ke DN 40
80	201.06	1,188	1,340	1,570	1,717	1,958	2,220	2,503	35	0.88	0.89	Ke DN 40
85	226.98	1,341	1,513	1,772	1,939	2,211	2,507	2,826	31	0.88	0.89	Ke DN 40
90	254.47	1,503	1,696	1,987	2,174	2,478	2,810	3,168	28	0.89	0.89	Ke DN 40
95	283.53	1,675	1,890	2,214	2,422	2,762	3,131	3,530	25	0.89	0.89	Pt DN 50
100	314.16	1,856	2,094	2,453	2,684	3,060	3,470	3,912	22	0.89	0.89	Pt DN 50
115	415.48	2,455	2,769	3,245	3,549	4,047	4,589	5,173	17	0.89	0.89	Pt DN 65
125	490.87	2,900	3,272	3,834	4,193	4,781	5,422	-	14	0.89	0.90	Pt DN 65
135	572.56	3,383	3,817	4,472	4,891	5,577	6,324	-	11	0.89	0.90	Pt DN 65
142	633.47	3,743	4,223	4,947	5,412	6,171	6,997	-	11	0.89	0.90	Pt DN 65

DK Double ball valve, Pt Plate valve

Important note: Abridged presentation of our complete product range. Other types on request

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS 180 (MF4a) hydraulic diaphragm metering pump

MF4a	Drive	type																
	H1		lrive hori	zontal*			Z1	Main d	rive cen	tral *			AR	Drive r	module i	right-har	nd	
	V1	Main d	lrive vert	ical*			AL	Drive r	nodule l	eft-hanc	t		M	Modifi	ed **			
		Plung	er diam	eter														
		025	25 mm		044	44 mm		065	65 mm		085	85 mm		115	115 m			
		030	30 mm		050	50 mm		070	70 mm		090	90 mm		125	125 m			
		036	36 mm		055	55 mm		075	75 mm		095	95 mm		135	135 m			
		040	40 mm		060	60 mm	1	080	80 mm		100	100 mr	m	142	142 m	m		
					0 (60) H					_			. , .					
			3	. ,	Strokes/					7		62) Stro						
			4	,	1) stroke					8		84) Stro						
			5 6	,	30) Stro					9 F	•	08) strok						
			О	,	42) Stro					-	200 (-)	Strokes	5/111111					
				S1				ng valveble, she		iais)								
				31			,	ped me	,									
					0		to 80 °		2	-40 °C	to 60 °	C	4	10 °C	to 150 °	C		
					1		to 60 °		3		to 115 °		•					
					1		cer for											
						0		multi-lay	er diaph	ragm								
						1	PTFE	multi-lay	er diaph	ragm w	ith pres	sure gau	ıge					
							Liquid	l end ve	rsion									
							0	Standa	ard				2	Standa	ard + do	uble val	ve	
							1		ard with				3	Standa	ard + do	uble val	ve with spring	
								-	ulic cor			on side						
								G		DIN/IS			A		ANSI	_		
								N		I NPT/A			D		DIN/IS	0		
												n disch			44101			
									G		DIN/IS		A	_	ANSI	_		
									N		A/TYN b	INSI	D	Flange	DIN/IS	O		
										Versic 0	n No fea	turoc			2	Liquid	end polished	
										1		end hea	itina		3		al paint finish	
										l '		r conne				Opcoid	a paint iiiiion	
											A		ard volta	ae 50H:	z			
											В			-	z adjusta	able		
											Н		ard volta	•				
											K	Standa	ard volta	ge 60H	z adjusta	able		
											0	Extern	ally mou	inted pu	ımp			
											1	withou	t motor v	with IEC	flange			
											2	withou	t motor v	with NE	MA flanç	ge		
														tection	system		sion protection	
												0	IP 55			D	IP 56 EExn	
												1	IP 56			E	IP 56 EExe	
												A	IP 55 E			F	IP 56 EExde	
												B C	IP 55 E			K	IP 65 EExde	
												C						
													0	ical opt				
													1		sensor			
															e length	adinet	ment	
														0	Manua		mont	
														1		mA with	nout Ex	
														2		mA Ex		
														3	0/4-20	mA Ex	Zone 1	
														4	0/4-20	mA Ex	without EX offshore	
														5	0/4-20	mA Ex	Zone 2 offshore	
														6	0/4-20	mA Ex	Zone 1 offshore	
															Enviro	nmenta	al conditions	
															0	-20 °C	to 40 °C	
															1	-40 °C	to 40 °C	
															2	0 °C to	55 °C	
																Appro	vals	
1								1				1				0	CE	
								1				1				1	API 675	
																2	VDMA	
																3	ATEX	
																4	ATEX / API 675	
																5	VDMA / ATEX	
					*For f	urther r	oump c	onfiaur	ations s	see Tvi	pe of d	rive pag	ne → 2-	51				

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.12.6 Orlita® MFS 600 (MF5b) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 600 Single Pump 50 Hz

Plunger Ø	Stroke volume				-	Q _{th} in I/h բ ode chara			Max. pressure	Ef	ficiency at	Standard type of valve
		90 [4]	99 [5]	117 [6]	134 [7]	156 [8]	173 [9]	204 [F]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
36	40.72	219	242	285	327	381	422	497	392	0.76	0.83	Ke DN 16
38	45.36	244	269	318	364	424	470	554	352	0.77	0.83	Ke DN 16
40	50.27	270	299	352	404	470	521	614	318	0.78	0.84	Ke DN 16
44	60.82	327	361	427	488	569	630	743	263	0.80	0.85	Ke DN 25
46	66.48	357	395	466	534	622	689	812	240	0.81	0.85	Ke DN 25
50	78.54	422	467	551	631	735	814	959	221	0.83	0.86	Ke DN 25
55	95.03	511	565	667	764	889	985	1,161	168	0.84	0.87	Ke DN 25
60	113.10	608	673	794	909	1,059	1,172	1,381	141	0.85	0.87	Ke DN 25
65	132.73	714	789	932	1,067	1,243	1,376	1,621	120	0.85	0.87	Ke DN 32
70	153.94	828	916	1,080	1,237	1,441	1,596	1,880	100	0.90	0.88	Ke DN 32
75	176.71	950	1,051	1,240	1,420	1,654	1,832	2,159	90	0.86	0.88	Ke DN 32
80	201.06	1,081	1,196	1,411	1,616	1,882	2,084	2,456	79	0.87	0.88	Ke DN 40
85	226.98	1,221	1,350	1,593	1,825	2,125	2,353	2,773	70	0.87	0.88	Ke DN 40
90	254.47	1,369	1,514	1,786	2,046	2,383	2,638	3,109	62	0.87	0.88	Ke DN 40
95	283.53	1,525	1,687	1,990	2,279	2,655	2,940	3,464	56	0.87	0.88	Ke DN 50
100	314.16	1,690	1,869	2,205	2,526	2,942	3,257	3,838	50	0.88	0.89	Ke DN 50
115	415.48	2,235	2,472	2,917	3,340	3,890	4,308	5,076	38	0.88	0.89	Ke DN 65
125	490.87	2,641	2,921	3,446	3,946	4,596	5,090	5,998	32	0.89	0.89	Ke DN 65
135	572.56	3,080	3,407	4,020	4,603	5,361	5,937	6,996	26	0.89	0.89	Ke DN 65
142	633.47	3,408	3,769	4,448	5,093	5,932	6,568	7,740	20	0.89	0.89	Ke DN 65

Technical Data MfS 600 Single Pump 60 Hz

Plunger Ø	Stroke volume			-		i _{th} in I/h p code cha			Max. pressure	Ef	ficiency at	Standard type of valve
		96 [3]	109 [4]	120 [5]	142 [6]	163 [7]	189 [8]	210 [9]				
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
36	40.72	235	265	294	347	397	462	512	392	0.76	0.83	Ke DN 16
38	45.36	262	296	327	386	442	515	570	352	0.77	0.83	Ke DN 16
40	50.27	291	328	363	428	490	571	632	318	0.78	0.84	Ke DN 16
44	60.82	352	397	439	518	593	691	765	263	0.80	0.85	Ke DN 25
46	66.48	384	434	480	566	648	755	836	240	0.81	0.85	Ke DN 25
50	78.54	454	512	567	669	765	892	988	200	0.83	0.86	Ke DN 25
55	95.03	550	620	686	809	926	1,080	1,196	168	0.84	0.87	Ke DN 25
60	113.10	654	738	816	963	1,102	1,285	1,423	141	0.85	0.87	Ke DN 25
65	132.73	768	866	958	1,131	1,294	1,508	1,670	120	0.85	0.87	Ke DN 40
70	153.94	891	1,005	1,111	1,312	1,501	1,749	1,937	100	0.90	0.88	Ke DN 32
75	176.71	1,023	1,154	1,276	1,506	1,723	2,008	2,224	90	0.86	0.88	Ke DN 32
80	201.06	1,164	1,313	1,452	1,713	1,960	2,285	2,530	79	0.87	0.88	Ke DN 40
85	226.98	1,314	1,482	1,639	1,934	2,213	2,580	2,856	70	0.87	0.88	Ke DN 40
90	254.47	1,473	1,661	1,838	2,168	2,481	2,892	3,202	62	0.87	0.88	Ke DN 40
95	283.53	1,641	1,851	2,047	2,416	2,767	3,222	3,568	56	0.87	0.88	Ke DN 50
100	314.16	1,818	2,051	2,269	2,677	3,063	3,571	3,954	50	0.88	0.89	Ke DN 50
115	415.48	2,405	2,713	3,000	3,541	4,051	4,722	5,229	38	0.88	0.89	Ke DN 65
125	490.87	2,841	3,205	3,545	4,183	4,786	5,579	-	32	0.89	0.89	Ke DN 65
135	572.56	3,314	3,739	4,135	4,879	5,587	6,508	7,206	26	0.89	0.89	Ke DN 65
142	633.47	3,667	4,136	4,575	5,399	6,182	7,200	7,973	20	0.89	0.89	Ke DN 65

DK Double ball valve, Ke Conical valve

Important note: Abridged presentation of our complete product range. Other types on request

Allow for a minimum 10% power reserve when designing in accordance with API

All hydraulic performance data is based on water at 20 °C

2.12 Hydraulic Diaphragm Metering Pumps Orlita® MF

Identity Code Ordering System

Orlita® MFS 600 (MF5a) hydraulic diaphragm metering pump

Drive t	уре															
H1	Main d	rive hori	zontal *						AL	Drive r	nodule le	eft-hand				
V1	Main d	rive vert	ical *						AR	Drive r	nodule r	ight-han	d			
Z1	Main d	rive cent	tral *						M	Modifi	ed **					
	Plunge	er diame	eter													
	036	36 mm		046	46 mm	1	065	65 mm		085	85 mm		115	115 mr	n	
	038	38 mm		050	50 mm		070	70 mm		090	90 mm		125	125 mr	n	
	040	40 mm		055	55 mm	1	075	75 mm		095	95 mm		135	135 mr	n	
	044	44 mm		060	60 mm	1	080	80 mm		100	100 mr	n	142	142 mr	n	
				(60) H												
		3	٠, ,	Strokes/		5	,	0) Stroke		7		63) Strok			,	10) strokes/min
		4	,	9) stroke		6	,	42) Strol		8	156 (18	39) Strok	es/min	F	204 (-)	Strokes/min
								e mater	ials)							
			S1			l (see tal										
						of pum		edium	2	40 °C	to 60 °C	,		4	10 °C	to 150 °C
				0		to 60 °C			3		to 115 °			4	10 0	10 150 °C
				'		cer for			3	10 C	10 115	C				
					0			er diaph	ragm							
					1			er diaph	_	th pres	sure dau	ae				
					1		end ve		ag	а. р. оо	Ja. o gaa	90				
						0	Standa						2	Standa	rd + do	uble valve
						1		ard with s	spring				3			uble valve with spring
								ulic con		suction	n side					
							G		DIN/IS				Α	Flange	ANSI	
							N	Thread	NPT/A	NSI			D	Flange	DIN/IS0	0
												arge sid				
1		1						G		DIN/IS			A	Flange		
								N		NPT/A	NSI		D	Flange	DIN/IS	0
									Versio							
									0	No fea		time.	2		end poli	
									ļ		end hea		3	Specia	l paint fi	HISH
										A	Conne	ctor ard voltag	ao 50∐-	7		
										В		ırd voltaç			ıhle	
										Н		ırd voltaç			ibic	
										K		rd voltag	-		ıble	
										0		ally mou				
										1		t motor v				
										2	without	t motor v	vith NEN	MA flang	e	
											Electri	cal prot	ection	system	/ explo	sion protection
											0	IP 55		Ď	IP 56 E	Exn
											1	IP 56		E	IP 56 E	Exe
											Α	IP 55 E		F	IP 56 E	
											В	IP 55 E		K	IP 65 E	Exde
											С	IP 55 E				
												Electri				
												0	no opti			
														sensor	odinst	mont
													O Stroke	length manua		inent
1		1						1					1		ı mA with	out Ex
													2		mA Ex	
													3		mA Ex	
													4			without EX offshore
													5	0/4-20	mA Ex 2	Zone 2 offshore
1		1			1	1		1	1				6	0/4-20	mA Ex 2	Zone 1 offshore
														Enviro		al conditions
1		1						1						0		to 40 °C
														1		to 40 °C
														2	0 °C to	
1		1						1							Appro	
															0	CE
															1	API 675
															2	VDMA
	l		1												3	ATEX / API 675
							1	1	1	i	i	1	ì	1	4	141EX/4P16/5
															5	VDMA / ATEX

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.12.7

Orlita® MFS 1400 (MF6a) Hydraulic Diaphragm Metering Pumps

Technical Data MfS 1400 Single Pump 50 Hz

Plunger Ø	Stroke volume				capacity (dentity co				Max. pressure	Ef	ficiency at	Standard type of valve
		80 [4]	93 [5]	106 [6]	125 [7]	143 [8]	169 [9]	191 [F]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke								200	pressure	pressure	16 511 65
30	42.41	202	235	270	318	364	431	486	630	0.67	0.78	Ke DN 16
40	75.40	360	419	480	565	647	766	864	435	0.75	0.83	Ke DN 25
42	83.13	397	462	529	623	713	844	952	435	0.76	0.83	Ke DN 25
44	91.23	435	507	581	684	783	927	1,045	394	0.76	0.83	Ke DN 25
46	99.71	476	554	635	748	856	1,013	1,142	361	0.77	0.83	Ke DN 25
50	117.81	562	654	750	884	1,011	1,197	1,350	305	0.79	0.84	Ke DN 25
53	132.37	632	735	843	993	1,136	1,345	1,517	271	0.79	0.84	Ke DN 32
55	142.55	681	792	907	1,070	1,224	1,448	1,633	250	0.81	0.85	Ke DN 25
57	153.11	731	851	975	1,149	1,314	1,556	1,754	235	0.81	0.85	Ke DN 32
60	169.65	810	943	1,080	1,273	1,456	1,724	1,944	212	0.82	0.86	Ke DN 25
65	199.10	951	1,106	1,268	1,494	1,709	2,023	2,282	180	0.83	0.87	Ke DN 32
70	230.91	1,103	1,283	1,470	1,733	1,983	2,346	2,646	155	0.84	0.87	Ke DN 40
75	265.07	1,266	1,473	1,688	1,989	2,276	2,694	3,038	135	0.85	0.87	Ke DN 40
80	301.59	1,440	1,676	1,920	2,263	2,590	3,065	3,456	119	0.85	0.87	Ke DN 40
90	381.70	1,823	2,121	2,431	2,865	3,278	3,879	4,375	94	0.90	0.90	Ke DN 50
100	471.24	2,251	2,619	3,001	3,537	4,047	4,789	5,401	76	0.87	0.88	Ke DN 65
120	678.58	3,242	3,772	4,321	5,093	5,827	6,896	7,778	53	0.88	0.89	Ke DN 65
140	923.63	4,412	5,134	5,882	6,933	7,932	9,387	10,587	38	0.88	0.89	Ke DN 80
160	1,206.37	5,763	6,706	7,683	9,055	10,360	12,261	13,827	29	0.89	0.89	Ke DN 80

Technical Data MfS 1400 Single Pump 60 Hz

Plunger Ø	Stroke volume				capacity (Identity c				Max. pressure	Ef	ficiency at	Standard type of valve
		88 [3]	97 [4]	112 [5]	129 [6]	152 [7]	174 [8]	206 [9]				
mm	ml/	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke									pressure	pressure	
30	42.41	223	245	286	327	386	442	523	630	0.67	0.78	Ke DN 16
40	75.40	396	437	508	582	686	785	930	435	0.75	0.83	Ke DN 25
42	83.13	437	482	560	642	757	866	1,025	435	0.76	0.83	Ke DN 25
44	91.23	480	529	615	705	831	951	1,125	394	0.76	0.83	Ke DN 25
46	99.71	524	578	672	770	908	1,039	1,230	361	0.77	0.83	Ke DN 25
50	117.81	619	683	794	910	1,073	1,228	1,453	305	0.79	0.84	Ke DN 25
53	132.37	696	767	893	1,023	1,206	1,379	1,632	271	0.79	0.84	Ke DN 32
55	142.55	750	826	961	1,102	1,298	1,486	1,758	250	0.81	0.85	Ke DN 25
57	153.11	805	887	1,033	1,183	1,394	1,596	1,888	235	0.81	0.85	Ke DN 32
60	169.65	892	983	1,144	1,311	1,545	1,768	2,092	212	0.82	0.86	Ke DN 25
65	199.10	1,047	1,154	1,343	1,539	1,814	2,075	2,456	180	0.83	0.87	Ke DN 32
70	230.91	1,214	1,339	1,558	1,785	2,103	2,407	2,848	155	0.84	0.87	Ke DN 40
75	265.07	1,394	1,537	1,788	2,049	2,415	2,763	3,270	135	0.85	0.87	Ke DN 40
80	301.59	1,586	1,748	2,035	2,331	2,747	3,143	3,720	119	0.85	0.87	Ke DN 40
90	381.70	2,008	2,213	2,575	2,950	3,477	3,979	4,200	94	0.90	0.90	Ke DN 50
100	471.24	2,479	2,732	3,179	3,642	4,293	4,912	4,708	76	0.87	0.88	Ke DN 65
120	678.58	3,570	3,935	4,578	5,245	6,182	7,073	8,371	53	0.88	0.89	Ke DN 65
140	923.21	4,859	5,356	6,232	7,140	8,415	9,628	-	38	0.88	0.89	Ke DN 80
160	1,206.37	6,347	6,995	8,140	9,325	10,991	12,575	-	29	0.89	0.89	Ke DN 80

DK Double ball valve Ke Conical valve

Abridged presentation of our complete product range. Other types on request Important note:

- Allow for a minimum 10% power reserve when designing in accordance with API
- All hydraulic performance data is based on water at 20 °C

Identity Code Ordering System Orlita® MFS 1400 (MF6a) hydraulic diaphragm metering pump

	Drive t	уре															
	H1	Main d	rive bare	e horizo	ntal *		Z1	Main d	lrive bar	e centra	*		AR	Drive r	nodule i	ight-hai	nd
,	V1	Main d	rive bare	e vertica	al *		AL	Drive r	nodule l	eft-hand			M	Modifi	ed **		
		Plunge	er diam	eter													
		030	30 mm		046	46 mm		057	57 mm		075	75 mm	ı	120	120 m	m	
		040	40 mm		050	50 mm		060	60 mm		080	80 mm	ı	140	140 m	m	
		042	42 mm		053	53 mm		065	65 mm		090	90 mm		160	160 m		
		044	44 mm		055	55 mm		070	70 mm		100	100 mr					
			3 4	- (88) 5	0 (60) H Strokes/) strokes	min	5 6		2) Stroke 29) Stro		7		,	okes/min okes/min		169 (2 191 (-)	06) strokes/min
			·	, ,	•	aterial ((.	, •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		
				S1	Stainle	ess steel	(see ta	ble, she	et 2)								
						erature				40.00	to 60 °	_	4	10.00	to 150 °		
					0		to 80 °		2		to 115 °		4	10 .C	10 150	C	
							cer for										
						0	PTFE	multi-lay	er diaph								
						1			er diaph	ragm w	ith pres	sure gau	ıge				
							Liquic 0	Standa					2	Ctond	ard + do	uble vel	NO.
							1		ard with:	enrina			3				ve with spring
							ľ		ulic cor		suctio	on side		Otaria	ara r ao	abio vai	vo war opinig
								G		DIN/IS		0.0.0	Α	Flange	ANSI		
								N	Thread	I NPT/A	NSI		D	Flange	DIN/IS	0	
												n disch	arge si	de			
									G		DIN/IS						
									N A		NPT/A	11/51					
									D	Flange	DIN/IS	0					
										Versio							
										0	no fea	tures					
										1		end hea					
										2		end poli					
										3		al paint fi					
											A	I Standa		age 50H	7		
											В			age 50H		able	
											Н			age 60H:	-	2010	
											K			age 60H		able	
											0			unted pu	-		
											1			with IEC	_		
											2			with NE			
														otection	system		osion protection
												0	IP 55			D	IP 56 EExn
												1	IP 56			E	IP 56 EExe
												A	IP 55 I			F	IP 56 EExde
												B C	IP 55 I	EExde		K	IP 65 EExde
												C		rical opt	ione		
													0	no opt			
													1		sensor		
														Stroke	e length	adjust	ment
														0	manua	ıl	
														1			hout Ex
														2		mA Ex	
														3		mA Ex	
														4 5			without EX offshore Zone 2 offshore
														6			Zone 1 offshore
														Ĭ			al conditions
															0		to 40 °C
															1	-40 °C	to 40 °C
															2		55 °C
																Appro	·
																0	CE
																1	API 675
																2	VDMA
																3	ATEX / API 675
1																5	VDMA / ATEX
, ,						1	1	1	1	i		1	1	1	i		* DIVIN / NILN

^{*}For further pump configurations see Type of drive page \rightarrow 2-51

^{**} Modified design (M) is available with every identity code feature

2.13 Hydraulic Diaphragm Metering Pump Orlita® MH

2.13.1

Hydraulic Diaphragm Metering Pumps Orlita® MH with **Metal Diaphragm**

Reliable capacity even at very high pressure

Capacity range of single pump: up to 800 l/h, up to 700 bar

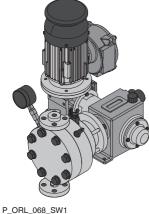
The diaphragm metering pump Orlita® MH has a robust metal diaphragm, which permits precise pump capacities even at very high pressure. The ORLITA® MH has a modular construction and therefore has a versatile range of uses. A range of power end versions are therefore available and drives, power ends and dosing heads can be freely combined.

ORLITA® MH hydraulic diaphragm metering pumps (MHS 18 to MHS 1400) with a stroke length of 15 to 60 mm provide a capacity range of up to 800 l/h at pressures of up to 7 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® MF product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working pressures.

Your benefits

Excellent process safety and reliability:

- Metal double diaphragm with integrated diaphragm rupture warning system ensures precise and lowwear operation even at very high pressure
- The product chamber is hermetically separated from the hydraulic part
- Integrated hydraulic relief valve and automatic bleed valve for the hydraulic chamber
- Wear-free, valveless enforced anti-cavitation of the hydraulic leakage guarantees optimum dosing
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)


Excellent flexibility:

- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- The modular construction ensures a wide range of uses
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Temperature range -60 °C to +200 °C
- Customised designs are available on request


Technical details

- MhS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- MhS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- MhS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- MhS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- MhS 600 Stroke length: 0-40 mm, Rod force: 40,000 N
- MhS 1400 Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle.
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive).
- Metering reproducibility is better than \pm 0.5% within the stroke length adjustment range of 10 100% under defined conditions and with proper installation.
- Metal diaphragm with diaphragm rupture monitoring system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 60 °C to + 200 °C
- Design in compliance with API 675 among others

- Oil/ gas production (onshore/offshore)
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Food production
- Packaging industry (bottling pumps)

Orlita® MHS 18-20

P ORL 067 SW1 Orlita® MHS 35/45

P ORL 069 SW1 Orlita® MHS 35-8-8

P_ORL_070_SW1 Orlita® MHS 600-28-28

2.13 Hydraulic Diaphragm Metering Pump Orlita® MH

Pump type	Plunger Ø	Stroke volume		M	lax. capacity	(theo.) in I/I	n at strokes/	min (50 Hz)	Max. pressure
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 18/	3	0.11	0.37	0.46	0.58	0.71	0.92	1.32	100
MHS 18/	5	0.29	1	1.2	1.6	1.9	2.5	3.6	400
MHS 18/	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	400
MHS 18/	7	0.58	2	2.5	3.1	3.8	5	7.1	400
MHS 18/	8	0.75	2.6	3.2	4.1	5	6.5	9.3	348
MHS 18/	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	222
MHS 18/	12	1.70	5.9	7.3	9.2	11.3	14.7	21	154
MHS 18/	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	87
MHS 18/	20	4.71	16.4	20.5	25.5	31.5	41	58.5	55

Pump type	Plunger Ø	Stroke volume		Max	c. capacity (t	theo.) in I/h a	t strokes/mi	n (50 Hz)	Max. pressure
			58	73	91	112	145	207	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	900
MHS 35/	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	630
MHS 35/	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	445
MHS 35/	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	309
MHS 35/	14	3.08	10.7	13.3	16.7	20.6	26.7	38.2	227
MHS 35/	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	174
MHS 35/	18	5.09	17.7	22.1	27.6	34.0	44.2	63.2	137
MHS 35/	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	111
MHS 35/	22	7.60	26.4	33.0	41.3	50.8	66.1	94.4	92
MHS 35/	25	9.80	34.1	42.7	53.3	65.7	85.4	122.0	71
MHS 35/	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	34
MHS 35/	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	27
MHS 35/	45	31.81	110.6	138.3	172.9	212.8	276.7	395.3	22

Pump type	Plunger Ø	Stroke volume		Max	. capacity (th	heo.) in I/h at	t strokes/mi	n (50 Hz)	Max. pressure
			98	104	122	134	160	182	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 80/	16	4.02	23.6	25.0	29.4	32.4	38.6	43.9	696
MHS 80/	18	5.09	29.9	31.7	37.2	41.0	48.8	55.5	550
MHS 80/	20	6.28	37.0	39.1	46.0	50.6	60.3	68.5	445
MHS 80/	22	7.60	44.7	47.4	55.6	61.3	73.0	82.9	368
MHS 80/	25	9.82	57.8	61.2	71.9	79.1	94.2	107.1	285

Pump type	Plunger Ø	Stroke volume		Max.	capacity (th	neo.) in I/h at	strokes/mir	(50 Hz)	Max. pressure
			99	117	134	156	173	204	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHS 600/25,5	25.5	20.43	121	143	164	191	211	249	783
MHS 600/28	28	24.63	146	172	198	230	255	300	649
MHS 600/30	29.2	26.79	159	188	215	250	277	327	570
MHS 600/32	32	32.17	191	225	258	301	333	393	497

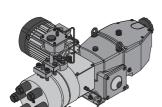
Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)						
			93	106	125	143	169	191		
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar	
MHS 1400/	30	42.41	235	270	318	364	431	486	848	
MHS 1400/	32	48.25	268	307	362	414	490	553	746	
MHS 1400/	36	91.07	339	388	458	524	620	700	589	
MHS 1400/	40	75.40	419	480	565	647	766	864	477	

Important note:

Abridged presentation of our complete product range. Other types on request

2.14 Hydraulic Metal Diaphragm Metering Pump Highpressure Orlita® MHHP

2.14.1


Hydraulic Metal Diaphragm Metering Pump High-pressure Orlita® MHHP

Reliable capacity even at maximum pressure

Capacity range of single pump: 3 - 11 l/h, 3,000 bar

The metal diaphragm metering pumps Orlita® MHHP are special pumps, which provide precise pump capacities even at maximum pressures of up to 3,000 bar.

P ORI 065 SW1 Orlita® MHR 150/7

The hydraulic metal diaphragm metering pumps ORLITA® MHRH 150 / MHSH 600 have a metal diaphragm, which is designed to meter precisely at maximum pressures of up to 3,000 bar, thereby ensuring outstanding process reliability and safety.

Technical details

- MHSH: Stroke length: 0 40 mm, rod force: 40,000 N
- MHRH: Stroke length: 0 32 mm, rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100 % stroke length range under defined conditions and with correct installation
- Metal diaphragm
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end/drive versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range -10 °C to +60 °C

- Chemical/petrochemical industry
- Maximum pressure applications of up to 3,000 bar

Pump type	Plunger Ø	Stroke volume	Max.	Max. capacity (theo.) in I/h at strokes/min (50 Hz)				
			58	87	116	145		
	mm	ml/stroke	l/h	I/h	l/h	l/h	bar	
MHRH 150/	6	0.90	3.1	4.7	6.3	7.8	3,000	
MHRH 150/	7	1.23	4.2	6.4	8.5	10.7	3,000	

Pump type	Plunger Ø	Stroke volume		Max. capa	acity (theo.) in I/h at s	rokes/min	(50 Hz)	Max. pressure
			90	99	117	134	156	173	
	mm	ml/stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
MHSH 600/	10.5	3.46	18.6	20.6	24.3	27.8	32.4	35.9	3,000

Plunger Metering Pump Sigma/ 2 (Basic Type)

Sigma plunger pump - durable and high-performance

Capacity range 2 - 76 l/h, 320 - 12 bar

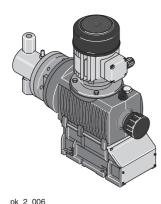
The plunger metering pump Sigma/ 2 (Basic Type) is an extremely robust plunger metering pump with high-performance plunger and the option to adjust the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

The plunger petering pump Sigma/ 2 (Basic Type) (SBKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

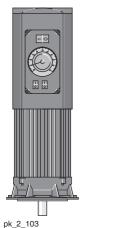
Excellent process safety and reliability:

■ Metering reproducibility is better than ± 1% within the 10 – 100% stroke length range under defined conditions and with correct installation


Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons


- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Sigma Basic Type SBKa

2.15 Plunger Metering Pump Sigma/ 2 (Basic Type)

Variable speed motor with integrated frequency converter

Sigma Basic Type Control Functions

Stroke length actuator/controller

Actuator for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, 1 $k\Omega$ response signal potentiometer, enclosure rating IP 54.

Controller consists of actuator with servomotor and integrated servo control for stroke length adjustment via a standard signal. Standard signal input 0/4-20 mA corresponds to stroke length 0 - 100%. Automatic/ manual operation selection key for manual stroke adjustment. Mechanical status display of actual stroke length value output 0/4-20 mA for remote display.

Variable speed motors with integrated speed controller (identity code characteristic V)

Power supply 1 ph 230 V, 50/60 Hz, 0.37 kW.

External control with 0/4-20 mA (see pk_2_103)

(Speed Controllers see p. → 1-76)

Speed controllers in metal housing (identity code specification Z)

The speed controller assembly consists of a frequency converter and a variable speed motor of 0.37 kW. (Speed Controllers see p. → 1-76)

Technical Data

Type SBKa		Wit	h 1500 r	pm motor at 50 Hz		With	1800 r	pm motor at 60 Hz	Suction lift	Perm. pre-	Connector Suction/	Shipping weight	Plunger Ø
		at ma	ery rate x. back ressure	Max. stroke rate		а	ry rate it max. essure	Max. stroke rate		pressure suction side	Discharge Side		
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h	gph (US)	Strokes/ min	mWC	bar	Rp-DN	kg	mm
32002	320	1.9	0.46	71	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	4.0	0.52	129	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	6.4	0.55	195	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	6.1	1.42	71	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	11.0	1.43	129	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	16.7	1.43	195	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	12.4	2.90	71	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	22.5	2.91	129	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	34.1	2.92	195	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	22.4	5.26	71	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	41.5	5.37	129	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	64.0	5.45	195	174	76.0	20.08	233	4.0	6	3/8	25	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals/ball seat	Balls	Ball seat
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.25 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	with PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	1 ph, IP 55	230 V ±5%	50/60 Hz	0.37 kW	Variable speed motor with integrated frequency converter
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.18 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.18 kW	
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	0.18 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18 kW	with PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.18 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.21 kW	with PTC, speed control range 1:5

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.15.2

Identity Code Ordering System for SBKa

Sigma Basic Type SBKa

SBKa	Drive t	vpe											
	HK		rive, plu	nger									
			iivo, pia	ngo.									
		Type	l bar	1/le									
		32002	bar 320	I/h 1.9									
		23004		4.0									
		10006		6.4									
		14006		6.1									
		10011		11.0									
		05016		16.7									
		07012		12.4									
		04522		22.5									
		02534	25	34.1									
		04022	40	22.4									
		02541	25	41.5									
		01264	12	64.0									
			Liquid	end m	aterial								
			SS		ess steel								
					g mate	rial*							
				Т	PTFE	iui							
						cemen	t body*						
					4		r (oxide	ceramic	-)				
					7		end ve		·)				
						0		ing (star	ndard)				
						1				lastelloy	C 0 1	hor	
						'					C, 0.1	Dai	
									nection			(ing to tookning! data\
							0			aea cor	nector	(accordi	ing to technical data)
								Versio				/	N
								0				(standa	ra)
								1		t ProMir	ient [©] lo	go	
								M	Modifie				
										cal pow			
									S				60 Hz, 0.18 kW
									R				notor, 230/400 V, 0.37 kW
									V (0)				with integrated SC 1 pH, 230 V, 50/60 Hz
									Z	1 ph, va	ariable	speed s	et 230 V, 50/60 Hz
									M) Hz, 0.18 kW
									N	1 ph, A	C 115 \	/ 60 Hz,	0.18 kW
									L	3 ph, 2	30 V/40	0 V, 50	Hz, (EExe, EExd), 0.18 kW
									Р				Hz, (EExe, EExd), 0.18 kW
									1	No mot	or, with	B 14 fla	ange (size 71 (DIN)
									2	No mot	or, C 5	3 flange	(NEMA)
									3	No mot	or, B 5	size 63	(DIN)
										Enclos	ure ra	ing	
										0	IP 55 (standar	d)
										1	Exe m	otor vers	sion ATEX-T3
										2	Exd m	otor vers	sion ATEX-T4
										Α	ATEX	power e	nd
												senso	
											0		oke sensor (standard)
											2		relay (reed relay)
											3		sensor (Namur) for hazardous locations
													e length adjustment
												0	Manual (standard)
												1	With stroke positioning motor, 230 V/50/60 Hz
												2	With stroke positioning motor, 115 V/50/60 Hz
												3	With stroke control motor 020 mA 230 V/50/60 Hz
												4	With stroke control motor 420 mA 230 V/50/60 Hz
												5	With stroke control motor 020 mA 115 V/50/60 Hz
												6	With stroke control motor 420 mA 115 V/50/60 Hz

2.15.3 Spare Parts Kits

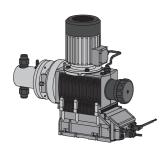
Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

2.16.1

Plunger Metering Pump Sigma/ 2 (Control Type)


Sigma plunger pump - durable, high-performance and intelligent.

Capacity range 2 - 76 l/h, 320 - 12 bar

The plunger metering pump Sigma/2 (Control Type) is an extremely robust metering pump with integral control for analogue and/or contact operation. It offers the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, and different flange designs.

The plunger metering pump Sigma/ 2 (Control Type) (SCKa) is a metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. The integrated controller allows the pump to adapt quickly and reliably to changing

P_ORL_066_SW1 Sigma control type SCKa

Flexible adaptation to the process:

ditions and with correct installation

■ The integrated controller allows the pump to adapt quickly and reliably to changing metering tasks

■ Metering reproducibility is better than ± 1% within the 10 – 100% stroke length range under defined con-

Customised designs are available on request

pk_2_104 Sigma Controller

Technical details

metering tasks.

Your benefits
Process reliability:

- Stroke length: 15 mm
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1,4571/1.4404, special materials are available on request
- High-performance oxide ceramic plunger
- Integrated control for analogue and/or contact operation
- Power supply: 1-phase, 100 230 V ±10%, 240 V ± 6%, 50/60 Hz (220 W)
- Degree of protection IP 55
- Highly rigid fibreglass-reinforced plastic housing with excellent chemical resistance
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

Technical Data

Туре		very rate at max. pressure		With 1800 rpm motor at 60 Hz		Suction lift	Perm. pre- pressure suction side	Connector Suction/ Discharge Side	Shipping weight	Plunger Ø	
			b	a	ry rate it max. essure	Max. stroke rate					
	bar	ml/ stroke	psi	l/h	gph (US)	Strokes/ min	mWC	bar	Rp-DN	kg	mm
32002	320	0.46	4,641	2.3	0.61	84	5.0	160	1/4	24	8
23004	230	0.52	3,336	4.8	1.27	154	5.0	115	1/4	24	8
10006	100	0.55	1,450	7.6	2.01	233	5.0	50	1/4	24	8
14006	140	1.42	2,031	7.1	1.88	84	4.0	70	1/4	24	12
10011	100	1.43	1,450	13.1	3.46	153	4.0	50	1/4	24	12
05016	50	1.43	725	20.0	5.28	233	4.0	25	1/4	24	12
07012	70	2.90	1,015	14.8	3.91	85	4.0	35	1/4	24	17
04522	45	2.91	653	26.7	7.05	153	4.0	22.5	1/4	24	17
02534	25	2.92	363	40.8	10.78	233	4.0	12.5	1/4	24	17
04022	40	5.26	580	26.5	7.00	84	4.0	20	3/8	25	23
02541	25	5.37	363	49.2	13.00	153	4.0	12.5	3/8	25	23
01264	12	5.45	174	65.4	17.28	200	4.0	6	3/8	25	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure	Seals/ball seat	Balls	Ball seat
		connector			
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404
			PTFE +25% carbon		

Motor Data

Identity code specification		Power supply		R	emarks
U	1-phase, IP 55	100 – 230 V ±10%, 240 V ±6%,	50/60 Hz	220 W	

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.16 Plunger Metering Pump Sigma/ 2 (Control Type)

2.16.2 Identity Code Ordering System for SCKa

Sigma Control Type SCKa

SCKa	Drive	type													
	HK		rive, plu	nger											
		Туре													
		71	bar	l/h											
		32002		2.3											
		23004	230	4.8											
		10006		6.4											
		14006		7.1											
		10011	100	13.1											
		05016	50	16.7											
		07012	70	14.8											
		04522	45	26.7											
		02534	25	34.1											
		04022		26.5											
		02541	25	49.2											
		01264	12	64.0											
			Liquid	end ma	aterial										
			SS	Stainle	ss steel										
				Sealin	g mater	ial*									
				Т	PTFE										
					Displa	cement	body*								
					4	Plunge	r (oxide	ceramic	:)						
						Liquid	end ve	rsion							
						0		ng (star							
						1	With 2	valve sp	rings, H	astelloy	C 4, 0.1	bar			
									nection						
							0			ded cor	nector (accordi	ng to te	chnical	l data)
								Versio							
								0		roMinen					
								1			nent® log	-			
											ver supp		=0/001		
									U		00-230 V		50/60 F	1Z	
											and plu				
										A B	2 m Eu 2 m Sw				
										С	2 m Au				
										D	2 m US				
										D		A			
											Relay 0	No rela	N/		
											1			otina ra	relay 1x changeover 230 V – 2A
											3				elay 1x changeover 230 V – 2A relay 1x changeover 230 V – 2A
											4				x normally open 24 V - 100 mA
											5				y 2x normally open 24 V – 100 mA
											A				relays normally closed 2x normally open 24
											^	V - 100	mA	arriirig	Telays normally closed 2x normally open 24
											F			rmally	closed 1x changeover 230 V - 8 A
												Contro	ol varia	nt	-
												0	Manua	ıl + exte	ernal with pulse control
												1	Manua	ıl + exte	ernal + pulse control + analogue
													Acces	s code	е
													0	1	ccess code
													1	With a	access code
														Meter	ering monitor
														0	Input with pulse evaluation
														1	Input with cont. evaluation
															Stroke length adjustment
															0 Manual

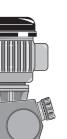
2.16.3 Spare Parts Kits

Consisting of: 1 ceramic metering plunger, 4 valve balls, 4 ball seat discs, 2 PTFE/graphite ball seals, 2 plunger guides, 14 flat seals, 2 O-rings.

	Туре	Order no.
Liquid end FK 08	Applies to identity code: 32002, 23004, 10006	1001572
Liquid end FK 12.5	Applies to identity code: 14006, 10011, 05016	910470
Liquid end FK 25	Applies to identity code: 07012, 04522, 02534	910471
Liquid end FK 50	Applies to identity code: 04022, 02541, 01264	910472

2.17 Plunger Metering Pump Meta

2.17.


Plunger Metering Pump Meta

Meta plunger pump - durable and high-performance

Capacity range 6 - 59 l/h, 216 - 52 bar

/

The extremely high-performance Meta is a plunger metering pump with the option of adjusting the pump capacity in 0.2% increments. It offers a wide range of power end versions, such as three-phase or 1-phase AC motors, even for Exe and Exde areas with ATEX certification.

pk_2_010 Meta plunger metering pump MTKa

pk_2_011
Meta plunger metering pump MTKa

The Meta (MTKa) is a plunger metering pump, the pump capacity of which can be precisely adjusted in 0.2% increments, either manually or optionally with an electric actuator or control drive. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Excellent process safety and reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

Flexible adaptation to the process:

- Wide range of power end versions, also for use in Exe and Exde areas and different flange designs for the use of customised motors
- Customised designs are available on request

Technical details

- Stroke length: 15 mm,
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by self-locking rotary dial in 0.2% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 1% within the 10-100% stroke length adjustment range under certain defined conditions and with proper installation
- Wetted materials: Stainless steel 1.4571/1.4404
- High-performance oxide ceramic plunger
- A wide range of power end versions is available: Three-phase standard motor, 1-phase AC motor, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection IP 55
- Fibreglass-reinforced plastic housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons.

Field of application

- Volume-proportional metering of chemicals in the treatment of boiler feed water
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of auxiliary agents in industrial production engineering, for instance hot wax metering in the production of adhesive strips

Control of Meta Piston Metering Pumps

(Speed Controllers see p. → 1-76)

Speed controllers in metal housing (Identity code characteristic Z)

Frequency changer built into IP 54 protective housing and main switch designed for max. 0.37 kW motor output.

Externally controlled with 0/4-20 mA / 0-10 V to correspond to 0-50 (60) Hz output frequency.

Integrated controller with versatile functions e.g. switching between external/internal control. With internal control, frequency input is via arrow keys. Multi lingual fault message display and motor temperature monitoring (thermistor-protection).

The speed controller assembly consists of a speed controller and a variable speed motor (see also identity code characteristic R).

2.17 Plunger Metering Pump Meta

Technical Data

Type MTKa	With 1500 rpm motor at 50 Hz			With 1800 rpm motor at 60 Hz			Suction lift	Perm. pre- pressure suction side	Connector Suction/ Discharge Side	Motor rating	Shipping weight	Plunger Ø	
	t	Delivery rate Max. at max. stroke back pressure rate		Delivery rate at max. back pressure		Max. stroke rate							
	bar	l/h	ml/ stroke	Strokes/ min	psi	l/h/gph (US)	Strokes/ min	mWC	bar	Rp-DN	W	kg	mm
21606	216	6.1	1.42	72	3,130	7.3/1.9	86	4.0	108	1/4	180	18	12
24006	240	6.1	1.42	72	3,477	7.3/1.9	86	4.0	120	1/4	370	20	12
16208	162	8.1	1.42	96	2,347	9.8/2.6	115	4.0	81	1/4	180	18	12
22508	225	8.1	1.42	96	3,260	9.8/2.6	115	4.0	112.5	1/4	370	20	12
12910	129	10.2	1.42	120	1,878	12.2/3.2	144	4.0	64.5	1/4	180	18	12
21610	216	10.2	1.42	120	3,130	12.2/3.2	144	4.0	108	1/4	370	20	12
10812	108	12.2	1.42	144	1,565	14.7/3.9	173	4.0	54	1/4	180	18	12
21012	210	12.2	1.42	144	3,043	14.7/3.9	173	4.0	105	1/4	370	20	12
10213	102	13.0	3.01	72	1,479	15.6/4.1	86	4.0	51	1/4	180	18	17
11313	113	13.0	3.01	72	1,644	15.6/4.1	86	4.0	56.5	1/4	370	20	17
07617	76	17.3	3.01	96	1,109	20.8/5.5	115	4.0	38	1/4	180	18	17
10617	106	17.3	3.01	96	1,541	20.8/5.5	115	4.0	53	1/4	370	20	17
06122	61	21.7	3.01	120	888	26.0/6.9	144	4.0	30.5	1/4	180	18	17
10222	102	21.7	3.01	120	1,479	26.0/6.9	144	4.0	51	1/4	370	20	17
05126	51	26.0	3.01	144	740	31.2/8.2	173	4.0	25.5	1/4	180	18	17
09926	99	26.0	3.01	144	1,438	31.2/8.2	173	4.0	49.5	1/4	370	20	17
05425	54	24.6	5.71	72	782	29.5/7.8	86	4.0	27	3/8	180	18	23
06025	60	24.6	5.71	72	869	29.5/7.8	86	4.0	30	3/8	370	20	23
04033	40	32.8	5.71	96	587	39.4/10.4	115	4.0	20	3/8	180	18	23
05633	56	32.8	5.71	96	815	39.4/10.4	115	4.0	28	3/8	370	20	23
03241	32	41.1	5.71	120	469	49.3/13.0	144	4.0	16 27	3/8	180	18	23
05441	54	41.1	5.71	120	782	49.3/13.0	144	4.0		3/8	370	20	23
02749	27	49.3	5.71	144	391	59.2/15.6	173	4.0	13.5	3/8	180	18	23
05249	52	49.3	5.71	144	761	59.2/15.6	173	4.0	26	3/8	370	20	23

Materials in Contact With the Medium

Material	Dosing head	Suction/pressure connector	Seals	Valve balls	Valve seat	Plunger
SST	Stainless steel 1.4404	Stainless steel 1.4404	PTFE or	Ceramic	Stainless steel 1.4404	Ceramic
			PTFE + 25 % carbon			

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	0.18/0.37 kW 0.18/0.37 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	0.37 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
M	1 ph AC, IP 55	230 V ±5%	50/60 Hz	0.37 kW	
N	1 ph AC, IP 55	115 V ±5%	60 Hz	0.37 kW	
L1	3 ph, II2GEExelIT3	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	0.18/0.37 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	0.18/0.37 kW	With PTC, speed control range 1:5

The motor power is dependent on the pump type (see technical data).

Motor data sheets can be requested for more information.

Special motors or special motor flanges are possible on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.17 Plunger Metering Pump Meta

2.17.2 Identity Code Ordering System for MTKa

Meta piston metering pump, version a

Н	ve type Main d	drive								
Α		n drive								
	Type									
	Type	Lbor	I/h							
	01000	bar								
	21606		6.1							
	24006		6.1							
	16208		8.1							
	22508	225	8.1							
	12910	129	10.2							
	21610	216	10.2							
	10812	108	12.2							
	21012		12.2							
	10213		13.0							
	11313									
			13.0							
	07617		17.3							
	10617		17.3							
	06122		21.7							
	10222		21.7							
	05126	51	26.0							
	09926	99	26.0							
	05425	54	24.6							
	06025	60	24.6							
	04033		32.8							
	05633		32.8							
	03241		41.1							
	05441		41.1							
	02749									
			49.3							
	05249		49.3							
			d end m							
		SS	Stainle	ess stee						
			Sealin	ng mate	rial*					
			Т	PTFE						
				Displa	cemen	t body*				
				s		ard plung	ger, oxic	de ceram	nic	
						l end ve				
					0		ve sprin	as		
					1				lastellov	r C, 0.1 bar
								nection		, 0, 0.1 2 4.
						0				nnector (according to technical data)
						Ü			aca coi	mestor (according to technical data)
							Version 0		roMinon	nt® logo (standard)
							1			nent® logo
										nent® logo
							M	Modifie		
										ver supply
								S		30 V/400 V, 50/60 Hz (WBS)
								R		ariable speed motor, 230 V/400 V
								Z	1 ph, v	ariable speed set 230 V, 50/60 Hz
								M	1 ph, A	C, 230 V, 50/60 Hz
								N	1 ph. A	C, 115 V, 60 Hz
								L		30 V/400 V, 50 Hz, (Exe, Exd)
								P		30 V/400 V, 60 Hz, (Exe, Exd)
								1		tor, with flange 90/63
								1		
								2	No mo	
								2		tor, with flange 140/71
								3	No mo	tor, with flange 140/71 tor, with flange 160/71
								3 4	No mo	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C
								3	No mo No mo Add-or	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor)
								3 4	No mo No mo Add-or	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C
								3 4	No mo No mo Add-or	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor)
								3 4	No mo No mo Add-or Enclos	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating
								3 4	No mo No mo Add-or Enclos 0	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard)
								3 4	No mo No mo Add-or Enclos 0	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard)
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 With stroke sensor, Namur signal (Ex)
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor No stroke sensor (standard) With stroke sensor, Namur signal (Ex) Stroke length adjustment
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 With stroke sensor, Namur signal (Ex) Stroke length adjustment 0 Manual (standard)
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor No stroke sensor (standard) With stroke sensor, Namur signal (Ex) Stroke length adjustment
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 With stroke sensor, Namur signal (Ex) Stroke length adjustment 0 Manual (standard)
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 With stroke sensor, Namur signal (Ex) Stroke length adjustment 0 Manual (standard) 2 With stroke positioning, 115 V/50/60 Hz A With stroke control motor 020 mA 230 V/50/60 Hz
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C n pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 With stroke sensor, Namur signal (Ex) Stroke length adjustment 0 Manual (standard) 2 With stroke positioning, 115 V/50/60 Hz A With stroke control motor 020 mA 230 V/50/60 Hz B With stroke control motor 420 mA 230 V/50/60 Hz
								3 4	No mo No mo Add-or Enclos 0 1 2	tor, with flange 140/71 tor, with flange 160/71 tor, with flange 56 C pump (no motor) sure rating IP 55 (standard) Exe motor version ATEX-T3 Exd motor version ATEX-T4 ATEX power end Stroke sensor 0 No stroke sensor (standard) 1 With stroke sensor, Namur signal (Ex) Stroke length adjustment 0 Manual (standard) 2 With stroke positioning, 115 V/50/60 Hz A With stroke control motor 020 mA 230 V/50/60 Hz

ProMinent

2.17 Plunger Metering Pump Meta

2.17.3 Spare Parts

Spare Parts Kits for Plunger Metering Pump Meta (MTKa)

Consisting of:

- 1 ceramic plunger
- 4 valve balls
- 4 ball seat discs
- 2 PTFE /graphite plunger packing rings
- 2 plunger guide bands
- 14 flat seals
- 2 O-rings

	Order no.
Liquid end FK 12.5 Applies to identity code: 21606, 24006, 16208,	910470
22508, 12910, 21610, 10812, 21012	
Liquid end FK 25 applies to identity code: 10213, 11313, 07617,	910471
10617, 06122, 10222, 05126, 09926	
Liquid end FK 50 applies to identity code: 05425, 06025, 04033,	910472
05633, 03241, 05441, 02749, 05249	

Mounting Frame for Meta MTMa and MTKa

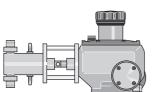
A base frame is available for main and add-on pump combinations.

	Order no.
Base frame for main and one add-on pump	803897
Base frame for main and two add-on pumps	803898
Base frame for main and three add-on numps	803899

2.18.1

Plunger Metering Pump Makro TZ

Powerful, built to last with a plunger


Capacity range of single pump: 8 - 1,141 l/h, 320 - 11 bar

The plunger metering pump Makro TZ impresses with its excellent process reliability, outstanding flexibility and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

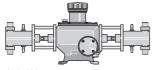
versions is available, including some for use in Exe and Exde areas with ATEX certification.

The plunger metering pump Makro TZ (TZKa) has an adjustable eccentric drive mechanism and, together with the Makro TZ diaphragm metering pump, forms a range of drive mechanisms with stroke lengths of 10 and/or 20 mm. This covers the capacity range from 8 to 2,100 l/h at 320 – 4 bar. A wide range of drive

pk_2_019

Makro TZ plunger metering pump

Your benefits
Process reliability:


■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

pk_2_018
Makro TZ TZKa externally mounted pump

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 4 different gear ratios are available
- Customised designs are available on request

pk_2_020 Makro TZ TZKa double head pump

Technical details

- Stroke length: 0-20 mm, Rod force: 8,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of shift ring in 0.5% increments (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 100% under defined conditions and with proper installation. Observe the information in the operating instructions.
- High-performance ceramic-coated stainless steel plunger Wetted materials: Stainless steel 1.4571.
 Special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

pk_2_103 Variable speed motor with integrated frequency converter

Makro TZ Metering Pump Actuators

Makro TZ stroke length actuator/control drive Makro TZ actuator

Servomotor for automatic stroke length adjustment, actuating period approx. 1 sec for 1 % stroke length, including 1 k Ω feedback potentiometer for stroke position response signal, IP 54 degree of protection. Electrical connection 230 V (±10 %), 50/60 Hz, 40 W mech. stroke length display fitted on the Makro TZ

Special voltage/higher degrees of protection/explosion protection upon request.

Makro TZ control drive

Control drive consisting of an actuator with servomotor and integral microprocessor controller for stroke length adjustment via a standard signal. Technical data see actuator.

Standard signal current input 0/4-20 mA corresponds to stroke length 0 -100 %, manual /automatic operation switch, key switch for stroke adjustment in manual mode. Actual value output 0/4-20 mA for remote display.

Variable speed motors with integrated frequency converter (identity code specification V)

The following functions are integrated in the terminal box cover:

- Start/Stop switch
- Manual/external operation switch (0/4 20 mA)
- Potentiometer for speed control in manual mode
- Onn request externally controllable via PROFIBUS® DP

Variable speed motors with integrated frequency converter with IP 55 protection See page → 1-76

Speed controllers with frequency converter (identity code specification Z)

The speed controller (complete) comprises a frequency converter and a variable speed motor (see also identity code specification R). The frequency converter is accommodated in an IP 55 rated protective housing with integral control unit and main switch.

Externally controllable with 0/4 - 20 mA or 0 - 10 V corresponding to 0 - 50 (60) Hz output frequency.

Frequency Converters for Speed Control see page → 1-76

Technical Data

Type TZKa	Wi	th 1500 r	pm moto	or at 50 Hz	With 1	800 rpm moto	r at 60 Hz	Suction lift	Connection, suction/ discharge side	Shipping weight	Plunger Ø
			ery rate	Max.	1	Delivery rate	Max.				
			at max.	stroke rate	be	at max.	stroke rate				
	bar	I/h	ressure ml/	Strokes/	psi	l/h/gph	Strokes/	mWC	G-DN	kg	mm
	Dai	1/11	stroke	min	pai	(US)	min		G-DIV	ĸg	
320009	320	8.7	2.0	72	4,627	10/2.6	86	4.0	Rp 1/4**-8	50	12
320012	320	11.6	2.0	96	4,627	14/3.7	115	4.0	Rp 1/4**-8	50	12
320014	320	14.5	2.0	120	4,627	17/4.5	144	4.0	Rp 1/4**–8	50	12
320017	320	17.4	2.0	144	4,627	21/5.5	173	4.0	Rp 1/4**-8	50	12
320018	320	17.7	4.1	72	4,627	21/5.5	86	4.0	Rp 1/4**-8	50	17
320024	320	23.6	4.1	96	4,627	28/7.4	115	4.0	Rp 1/4**-8	54	17
320030	320	29.5	4.1	120	4,627	35/9.2	144	4.0	Rp 1/4**-8	54	17
313035	313	35.4	4.1	144	4,526	42/11.1	173	4.0	Rp 1/4**-8	54	17
192033	192	32.9	7.6	72	2,776	39/10.3	86	4.0	Rp 3/8**-10	55	23
192044	192	43.9	7.6	96	2,776	59/15.6	115	4.0	Rp 3/8**-10	55	23
192055	192	54.8	7.6	120	2,776	66/17.4	144	4.0	Rp 3/8**-10	55	23
168066	168	65.8	7.6	144	2,437	79/20.9	173	4.0	Rp 3/8**-10	55	23
113057	113	57.5	13.3	72	1,634	69/18.2	86	4.0	Rp 3/8**-10	56	30
113077	113	76.6	13.3	96	1,634	92/24.3	115	4.0	Rp 3/8**-10	56	30
113096	113	95.8	13.3	120	1,634	115/30.4	144	4.0	Rp 3/8**-10	56	30
096115	96	114.9	13.3	144	1,392	138/36.5	173	4.0	Rp 3/8**-10	56	30
063104	63	104.3	24.2	72	911	125/33.0	86	4.0	G 1 1/4-20	58	40
063139	63	139.0	24.2	96	911	167/44.1	115	4.0	G 1 1/4-20	58	40
063174	63	173.8	24.2	120	914	209/55.2	144	4.0	G 1 1/4-20	58	40
052208	52	208.5	24.2	144	754	250/66.0	173	4.0	G 1 1/4-20	58	40
040163	40	162.9	37.7	72	578	195/51.5	86	4.0	G 1 1/4-20	58	50
040217	40	217.2	37.7	96	578	261/68.9	115	4.0	G 1 1/4-20	58	50
040271	40	271.5	37.7	120	580	326/86.1	144	4.0	G 1 1/4-20	58	50
033326	33	325.8	37.7	144	479	391/103.3	173	4.0	G 1 1/4-20	58	50
028237	28	237.0	54.9	72	405	284/75.0	86	4.0	G 1 1/2-25	62	60
028316	28	315.9	54.9	96	405	379/100.1	115	4.0	G 1 1/2-25	62	60
027395	27	394.9	54.9	120	392	474/125.2	144	4.0	G 1 1/2-25	62	60
022474	22	473.9	54.9	144	319	569/150.3	173	4.0	G 1 1/2-25	62	60
020322	20	322.5	74.7	72	289	387/102.2	86	4.0	G 1 1/2-25	62	70
020430	20	430.0	74.7	96	289	516/136.3	115	4.0	G 1 1/2-25	62	70
020538	20	537.6	74.7	120	290	645/170.4	144	4.0	G 1 1/2-25	62	70
016645	16	645.1	74.7	144	232	774/204.5	173	4.0	G 1 1/2–25	62	70
014475	14	475.1	110.0	72	202	571/150.8	86	4.0	G 2 1/4-40	68	85
014634	14	634.1	110.0	96	202	761/201.0	115	4.0	G 2 1/4-40	68	85
013793	13	792.6	110.0	120	189	951/251.2	144	4.0	G 2 1/4-40	68	85
011951	11	951.1	110.0	144	160	1,141/301.4	173	4.0	G 2 1/4-40	68	85

Other gear reduction ratios are available upon request.

The permissible admission pressure on the suction side is approx. 50% of the max. permissible back pressure.

 ** The suction and discharge connectors Rp 1/4 and Rp 3/8 are inner threaded and fitted with double ball valves.

Materials in Contact With the Medium

Pump type	Hydraulic Ø mm	Dosing head connection	Suction/ discharge seals	Ball seat	Valve balls	Plunger
SST	12 S to 30 S	Stainless steel 1.4571/1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
SST	40 S to 70 S	Stainless steel 1.4571/1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4401	Stainless steel/ ceramic
SST	85 S	Stainless steel 1.4571/1.4404	1.4581	PTFE/PTFE	1.4404 (plate) Hast. C (spring)	Stainless steel/ ceramic

2.18.2

Identity Code Ordering System TZKa

Plunger metering pump TZKa

TZKa	Drive t	уре												
	Н	Main dri	ve											
	Α	Add-on												
	D	Double	main dri	ive										
	В	Double add-on												
		Type*												
		320009		320030		113057		063174		028237		020538		
		320012		313035		113077		052208		028316		016645		
		320014		192033		113096		040163		027395		014475		
		320017		192044		096115		040217		022474		014634		
		320018		192055		063104		040271		020322		013793		
		320024		168066		063139		033326		020430		011951		
				end mat										
			SS	Stainles	s steel									
				Sealing		al								
				Т	PTFE									
						cement b	oody							
					S				hromiun	n dioxide-	coated			
						Liquid e								
						0		e spring						
						1		lve sprin	_					
							Hydra i	ılic conı Standar						
							4	SS unio						
							4	Version		u IIISEIT				
								0		oMinent [©]	® logo n	o framo		
								2		t ProMine			me	
								A		oMinent [©]				Y Y
								В		oMinent [©]				
								C		oMinent [©]				
								M	Modifie		9-, .		-,	
									Electri	cal powe	er supp	lv		
									S	3 ph. 23			z (WBS)	
									R	Variable	speed i	motor 4-	oole 230	/400 V
									V (0)	Variable	speed i	motor wit	th integr.	frequency converter
									Z	1 ph, vai	riable sp	eed con	trol set 1	ph, 230 V, 50/60 Hz
									Р	3 ph. 23	0/400 V	60 Hz (E	xe, Exd)
									L	3 ph. 23	0/400 V	50 Hz (E	Exe, Exd)
									V (2)	With inte	egrated t	frequenc	y conve	rter (Exd)
									4	No moto		,	-	
									7	No moto			•	
									8	No moto			•	
									0	Without		-	/ mounte	ed drive
										Enclosu				_
										0		Standard	,	ass F
										1		rsion AT		
										2 A		rsion AT		
										А		power er		
											Stroke 0	sensor		
											1		ke senso	
											Ι'			sor (Namur)
												O Stroke		adjustment length adjustment, man.
												1		stroke adjustment motor
												2		stroke adjustment motor
												3		0-20 mA stroke controller
												4		4-20 mA stroke controller
												5		0-20 mA stroke controller
												6		4-20 mA stroke controller
												3		
													Applic 0	Standard
														Canada

* Digits 1 - 3=back pressure [bar]; digits 4 - 6=feed rate [l/h]

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	1.5 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	2.2 kW	With PTC, speed adjustment range 1:20 with external fan 1 ph 230 V; 50/60Hz
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	2.2 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	1.5 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	1.5 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	1.5 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	1.5 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExdIICT4	400 V ±10%	50/60 Hz	2.2 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.18.3 Spare Parts Kits

Spare Parts Kits for Plunger Metering Pump Makro TZ

Comprising:

Valve balls

Valve plate with spring

Ball seat discs

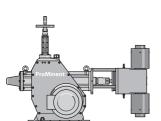
PTFE/graphite plunger packing rings

Plunger guides

Flat seals/O rings

	Order no.
Spare parts kit for Makro TZ FK 12/20 S DN 8	1019106
Spare parts kit for Makro TZ FK 17/20 S DN 8	1019107
Spare parts kit for Makro TZ FK 23/20 S DN 10	1019108
Spare parts kit for Makro TZ FK 30/20 S DN 10	1019109
Spare parts kit for Makro TZ FK 40/20 S DN 20	1019110
Spare parts kit for Makro TZ FK 50/20 S DN 20	1019111
Spare parts kit for Makro TZ FK 60/20 S DN 25	1019112
Spare parts kit for Makro TZ FK 70/20 S DN 25	1019113
Spare parts kit for Makro TZ FK 85/20 S DN 40	1019124

2.19.1


Plunger Metering Pump Makro/ 5

Powerful, built to last with a plunger

Capacity range of single pump: 38 - 6,014 l/h, 320 - 6 bar

1

The plunger metering pump Makro/ 5 can virtually be used throughout the low-pressure range and its modular construction enables it to be outstandingly adapted to the performance requirements of the respective application.

pk_2_075 Makro/ 5 M5Ka

pk_2_076

Makro/ 5 M5Ka

The plunger metering pump Makro/ 5 (M5ka) together with the Makro/ 5 hydraulic diaphragm and plunger metering pumps form a range of drive mechanisms with stroke lengths of 20 and/or 50 mm. This covers the capacity range from 38 to 6,108 l/h at 320 – 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification.

Your benefits

Process reliability:

■ Metering reproducibility is better than ± 0.5 % within the 10 – 100% stroke length range under defined conditions and with correct installation

Excellent flexibility:

- The modular construction with single and double head versions permits a wide range of applications, with the double head designs being operated in push-pull mode
- It is possible to combine up to 4 metering units, even with different pump capacities, in multiple pump systems
- 5 different gear ratios are available
- Customised designs are available on request

Technical details

- Stroke length: 0-50 mm, Rod force: 10,000 N
- Stroke length adjustment range: 0 100%
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display in 0.5% increments (optionally with electric control drive)
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation. Observe the information in the operating instructions
- High-performance ceramic-coated stainless steel plunger
- Wetted materials: Stainless steel 1.4571, special materials are available on request
- A wide range of power end versions is available: three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Salt water-resistant, acrylic resin-coated cast aluminium housing
- Provide suitable overload protection in all plunger metering pumps during installation for safety reasons

Makro/ 5 M5Ka externally mounted pump

pk_2_078 Makro/ 5 double head pump

Field of application

- Volume-proportional metering of chemicals/additives in water treatment
- Metering of reactants and catalysts in the chemical industry
- Level-dependent metering of additives in industrial production engineering

Makro/ 5 Pump Control

Stroke length variable speed drive Makro/ 5

Variable speed drive consisting of actuator with motor actuator and integrated microprocessor controller for stroke length adjustment via a standard signal. Actuating time approx. 100 sec. for 100% stroke length, equipped with 2 limit switches for min./max. position, IP rating: IP 52. Electrical connection 230 V (\pm 10%), 50/60 Hz, approx. 40 W, mech. stroke position indicator present at drive Makro/ 5.

Special voltage/higher IP ratings/Ex protection on request.

Includes:

Standard current input 0/4-20 mA (corresponds to stroke length 0-100%); internal switch for manual/ automatic operation, key switch for stroke adjustment in manual operation mode. Actual value output 0/4-20 mA for remote display.

Frequency converter for speed control in metal housing, IP rating 54

Frequency converter installed in protective housing IP 54 with integrated control unit and main switch suitable for the motor output stated in the following.

Externally controllable with 0/4-20 mA or 0-10V corresponding to 0-50 (60) Hz output frequency.

Integrated control unit with numerous functions, such as toggling external/internal control. With internal control, frequency setting is via arrow keys, error message on multi lingual display etc.

Including evaluator for temperature monitoring of the motor (thermistor protection).

Stroke sensor with namur signal

Mounted on the crank drive of the Makro/5 gearbox. For precise detection of each metering stroke, consisting of actuating cams and inductive proximity switch, switching signal according to Namur. Combined with electronic preselection counters suitable for batch metering or proportional metering in connection with the proportional control.

Retrofitting is only possible on factory premises.

Approved for ex-proof operation with IP rating EEx ia II C T6.

Technical Data

Type M5Ka	Wit	th 1500	rpm moto	or at 50 Hz	With 1800 rpm motor at 60 Hz				Suction lift	Connection, suction/ discharge side	Shipping weight	Plunger Ø
		Deliv	ery rate	Max.	Delivery rate Max.							
		back n	at max. ressure	stroke rate		hack n	at max. ressure	stroke rate				
		I/h	ml/	Strokes/	psi	I/h	gph	Strokes/	mWC	G-DN	kg	mm
0000000	bar	00	stroke	min	4.040	4.4	(US)	min	0.0	D= 1/4 0	000	17
3200038 3200048	320	38 48	11 11	60 75	4,640 4,640	44 56	12 15	71 89	3.0	Rp 1/4–8 Rp 1/4–8	300 300	17 17
3200046	320	66	11	103	4,640	78	21	123	3.0	Rp 1/4–8	300	17
3200085	320	85	11	133	4,640	101	27	159	3.0	Rp 3/8–10	300	17
3200100	320	100	11	156	-,040	-	_	-	3.0	Rp 3/8–10	300	17
2400070	240	70	21	60	3,480	82	22	71	3.0	Rp 3/8–10	300	23
2400088	240	88	21	75	3,480	104	27	89	3.0	Rp 3/8–10	300	23
2400121	240	121	21	103	3,480	144	38	123	3.0	Rp 3/8–10	300	23
2160157	216	157	21	133	3,132	187	49	159	3.0	Rp 3/8–10	300	23
1700184	170	184	21	156	-	-	-	-	3.0	G 1–15	300	23
1400120	140	120	35	60	2,030	142	38	71	3.0	G 1–15	302	30
1400151	140	151	35	75	2,030	179	47	89	3.0	G 1–15	302	30
1400207	140	207	35	103	2,030	247	65	123	3.0	G 1–15	302	30
1270267	127	267	35	133	1,842	319	84	159	3.0	G 1 1/4–20	302	30
1000314	100	314	35	156	_	_	_	_	3.0	G 1 1/4–20	302	30
0800214	80	214	63	60	1,160	253	67	71	3.0	G 1 1/4–20	303	40
0800268	80	268	63	75	1,160	318	84	89	3.0	G 1 1/4–20	303	40
0800368	80	368	63	103	1,160	439	116	123	3.0	G 1 1/4–20	303	40
0700476	70	476	63	133	1,015	569	150	159	3.0	G 1 1/2–25	303	40
0560558	56	558	63	156		_	-		3.0	G 1 1/2–25	303	40
0500335	50	335	98	60	725	396	105	71	3.0	G 1 1/2–25	303	50
0500419	50	419	98	75	725	497	131	89	3.0	G 1 1/2–25	303	50
0500576	50	576	98	103	725	687	181	123	3.0	G 1 1/2–25 G 2–32	303	50
0450744 0350872	45 35	744 872	98 98	133 156	653	889	235	159	3.0	G 2-32 G 2-32	303 303	50 50
0350483	35	483	141	60	508	- 571	- 151	- 71	3.0	G 1 1/2–25	311	60
0350463	35	604	141	75	508	716	189	89	3.0	G 1 1/2–25	311	60
0350829	35	829	141	103	508	989	261	123	3.0	G 2–32	311	60
0301071	30	1,071	141	133	435	1,280	338	159	3.0	G 2–32	311	60
0251257	25	1,257	141	156	-	-	-	-	3.0	G 2–32	311	60
0250658	25	658	192	60	363	778	206	71	3.0	G 2–32	311	70
0250822	25	822	192	75	363	975	258	89	3.0	G 2–32	311	70
0251129	25	1,129	192	103	363	1,348	356	123	3.0	G 2–32	311	70
0231458	23	1,458	192	133	334	1,743	460	159	3.0	G 2 1/4-40	311	70
0181710	18	1,710	192	156	-	-	-	-	3.0	G 2 1/4-40	311	70
0160970	16	970	284	60	232	1,147	303	71	3.0	G 2 1/4-40	317	85
0161212	16	1,212	284	75	232	1,438	380	89	3.0	G 2 1/4-40	317	85
0161665	16	1,665	284	103	232	1,988	525	123	3.0	G 2 1/4-40	317	85
0162150	16	2,150	284	133	232	2,570	679	159	3.0	G 2 3/4-50	317	85
0162522	16	2,522	284	156	-	-	-	-	3.0	G 2 3/4-50	317	85
0121343	12	1,343	393	60	174	1,589	420	71	3.0	G 2 3/4-50	331	100
0121678	12	1,678	393	75	174	1,991	526	89	3.0	G 2 3/4-50	331	100
0122305	12	2,305	393	103	174	2,752	727	123	3.0	G 2 3/4–50	331	100
0122977	12	2,977	393	133	174	3,558	940	159	3.0	G 2 3/4–50	331	100
0103491	10	3,491	393	156	_	-	_	-	3.0	G 2 3/4–50	331	100
0062269	6	2,269	664	60	87	2,684	709	71	3.0	G 2 1/2–65	350	130
0062837	6	2,837	664	75	87	3,366	889	89	3.0	G 2 1/2–65	350	130
0063896	6	3,896	664	103	87	4,652	1,229	123	3.0	G 2 1/2–65	350	130
0065031	6	5,031	664	133	87	6,014	1,589	159	3.0	G 2 1/2-65	350	130
0066000	6	6,000	664	156	-	-	-	-	3.0	G 2 1/2–65	350	130

2.19.2

Identity Code Ordering System for M5Ka

Plunger metering pump Makro/ 5

M5Ka	Drive 1	type										
	Н	Main drive										
	Α	Add-on po	wer end									
	D	Double ma	ain drive									
	В	Double ad		wer end								
		Type*										
		3200038	1	1400120		0500335		0250658		0121343		
		3200048		1400151		0500419		0250822		0121678		
		3200066		1400207		0500576		0251129		0122305		
		3200085		1270267		0450744		0231458		0122977		
		3200100		1000314		0350872		0181710		0103491		
		2400070		0800214		0350483		0160970		0062269		
		2400088		0800268		0350604		0161212		0062837		
		2400121		0800368		0350829		0161665		0063896		
		2160157		0700476		0301071		0162150		0065031		
		1700184		0560558		0251257		0162522		0066000		
		1700104	Liquid	end mate	rial	0201201		0102322		0000000		
			SS	Stainless								
				Sealing n		*						
				T	PTFE							
						cement b	odv					
					S	Stainless	steel pl	unaer. chr	omium o	lioxide-coa	ated	
						Liquid er						
						0		e springs				
						1		alve spring	s			
							Hvdra	ulic conne	ection			
							0	Standard		tion		
							4	SS union	nut and	insert		
								Version				
								0	With P	roMinent®	logo, no	o frame
								2	No Pro	Minent® Ic	go, no f	frame
								Α	With P	roMinent®	logo, w	ith frame, simplex
								В	With P	roMinent®	logo, w	ith frame, duplex
								С	With P	roMinent®	logo, w	ith frame, triplex
								D	With P	roMinent®	logo, w	ith frame, quadruplex
								M	Modifie	ed		
									Electri	cal power		
									S			50/60 Hz (WBS)
									R			notor 4-pole 230/400 V
									V (0)	Motor wit	h integr	ated frequency converter
									Р	3 ph. 230	/400 V 6	60 Hz (Exe, Exd)
									L			50 Hz (Exe, Exd)
									V (2)		_	ated frequency converter (Exd)
									5			EC 100 gearbox
									6			EC 112 gearbox
									0	No motor		
										Enclosu		
										0	,	Standard) ISO class F
										1		ersion ATEX-T3
										2		ersion ATEX-T4
										Α	_	power end
1											Stroke 0	e sensor No stroke sensor
											1	With stroke sensor (Namur)
												Stroke length adjustment
1												0 Stroke length adjustment, man.
												3 230 V 0-20 mA stroke controller
1												230 V 0-20 mA stroke controller 230 V 4-20 mA stroke controller
												5 115 V 0-20 mA stroke controller
1												6 115 V 4-20 mA stroke controller
1												Application 0 Standard
												Startuaru

^{*} Digits 1 - 3=back pressure [bar]; digits 4 - 7=feed rate [l/h]

Process Metering Pumps

2.19 Plunger Metering Pump Makro/ 5

Materials in Contact With the Medium

	Liquid end	Suction/ pressure connector	Valve seat/ seals	Valve balls	Plunger
Makro 5/50 HKDN 8-DN 10	Stainless steel 1.4571/ 1.4404	1.4571/1.4404	SS/PTFE	Oxide ceramics	Stainless steel/ ceramic
Makro 5/50 HKDN 15-DN 25	Stainless steel 1.4571/ 1.4404	1.4581	PTFE/PTFE	Stainless steel 1.4401	Stainless steel/ ceramic
Makro 5/50 HKDN 32-DN 65	Stainless steel 1.4571/ 1.4404	1.4581/1.4404	PTFE/PTFE	Stainless steel 1.4404 (plate/spring)	Stainless steel/ ceramic

The permissible priming pressure on the suction side is approx. 50% of the max. permissible back pressure.

Motor Data

Identity code specification		Power supply			Remarks
S	3 ph, IP 55	220-240 V/380-420 V 250-280 V/440-480 V	50 Hz 60 Hz	3 kW	
R	3 ph, IP 55	230 V/400 V	50/60 Hz	3 kW	With PTC, speed control range 1:5
V0	3 ph, IP 55	400 V ±10%	50/60 Hz	3 kW	Variable speed motor with integrated frequency converter
L1	3 ph, II2GEExellT3	220-240 V/380-420 V	50 Hz	3.6 kW	
L2	3 ph, II2GEExdIICT4	220-240 V/380-420 V	50 Hz	4 kW	With PTC, speed control range 1:5
P1	3 ph, II2GEExellT3	250-280 V/440-480 V	60 Hz	3.6 kW	
P2	3 ph, II2GEExdIICT4	250-280 V/440-480 V	60 Hz	4 kW	With PTC, speed control range 1:5
V2	3 ph, II2GEExellCT4	400 V ±10%	50/60 Hz	4 kW	Ex-variable speed motor with integrated frequency converter

Motor data sheets can be requested for more information.

Special motors or special motor flanges are available on request.

The motors are designed in compliance with the Ecodesign Directive 2005/32/EC (IE2 standard).

Information for use in areas at risk from explosion

Only use pumps with the appropriate labelling in line with the ATEX Directive 94/9/EC in premises at risk from explosion. Ensure that the explosion group, category and degree of protection specified on the label corresponds to or is better than the conditions prevalent in the intended field of application.

2.19.3 **Spare Parts Kits**

Spare parts kit for Makro/ 5, consisting of:

- Valve balls
- Valve plate with spring
- Ball seat discs
- Plunger packings made from PTFE/graphite
- Piston guide bands
- Flat seals / O-rings

	Order no.
Spare parts kit for Makro/ 5 FK 17/50 S DN 8	1005899
Spare parts kit for Makro/ 5 FK 17/50 S DN 10	1005536
Spare parts kit for Makro/ 5 FK 23/50 S DN 10	1005004
Spare parts kit for Makro/ 5 FK 23/50 S DN 15	1005900
Spare parts kit for Makro/ 5 FK 30/50 S DN 15	1005901
Spare parts kit for Makro/ 5 FK 30/50 S DN 20	1005537
Spare parts kit for Makro/ 5 FK 40/50 S DN 20	1005902
Spare parts kit for Makro/ 5 FK 40/50 S DN 25	1005538
Spare parts kit for Makro/ 5 FK 50/50 S DN 25	1005539
Spare parts kit for Makro/ 5 FK 60/50 S DN 25	1005903
Spare parts kit for Makro/ 5 FK 60/50 S DN 32	1005540
Spare parts kit for Makro/ 5 FK 70/50 S DN 32	1005541
Spare parts kit for Makro/ 5 FK 70/50 S DN 40	1005904
Spare parts kit for Makro/ 5 FK 85/50 S DN 40	1005542
Spare parts kit for Makro/ 5 FK 85/50 S DN 50	1005905
Spare parts kit for Makro/ 5 FK 100/50 S DN 50	1005543
Spare parts kit for Makro/ 5 FK 130/50 S DN 65	1005544

2.20 Plunger Metering Pump Orlita® PS

Plunger Metering Pump Orlita® PS

Orlita® PS - simple, robust and reliable.

Capacity range of single pump: 0 - 37,000 l/h, 400 - 4 bar

The high-performance plunger metering pump ORLITA® PS enables precise pump capacities even at maximum pressure and temperatures of up to +400 °C. The ORLITA® PS pump has a modular construction and thus versatile uses.

ORLITA® PS plunger metering pumps (PS 18 to PS 1400) with a stroke length of 15 to 60 mm provide a capacity ranging from 0 to 37,000 l/h at 400 - 4 bar. A wide range of drive versions is available, including some for use in Exe and Exde areas with ATEX certification. The Orlita® PS product range is designed to comply with API 675. Its modular construction permits the free combination of drives, power ends and dosing heads, producing a pump for a range of different feed rates and media operating at different working

Your benefits

Flexible adaptation to the process:

- Precise capacity even at maximum pressure
- Metering reproducibility is better than ± 0.5 % within the 10-100% stroke length range under defined conditions and with correct installation.
- Cone valves for use as suction and/or discharge valves with minimal wear, good self-cleaning and low pressure loss (NPSHR)
- Excellent hydraulic efficiency

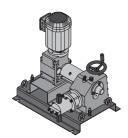
Excellent flexibility:

- The modular construction ensures a wide range of uses
- It is possible to combine up to 6 metering units, even with different pump capacities, in multiple pump systems
- 6 different gear ratios are available
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Customised designs are available on request

Technical details

- PS 18 Stroke length: 0-15 mm, Rod force: 1,750 N
- PS 35 Stroke length: 0-20 mm, Rod force: 3,500 N
- PS 80 Stroke length: 0-20 mm, Rod force: 14,000 N
- PS 180 Stroke length: 0-40 mm, Rod force: 18,000 N
- PS 600 Stroke length: 0-40 mm, Rod force: 40,000 N PS 1400 - Stroke length: 0-60 mm, Rod force: 60,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- The plunger packing can be tightened by the tensioning screw on the front even during operation
- Metering reproducibility is better than ± 0.5 % within the 10 100% stroke length range under defined conditions and with correct installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- Design in compliance with API 675 among others

Field of application


- Oil/ gas production (onshore/offshore)
- Refineries
- Chemical/Petrochemical industry
- Pharmaceuticals & cosmetics
- Packaging industry (bottling pumps)
- Maximum temperature applications of up to +400 °C

2.20.1

P ORL 071 SW1 Orlita® PS 18-36

P_ORL_072_SW1 Orlita® PS 80-30

P_ORL_073_SW1 Orlita® PS 18-12 high-temperature

P ORL 074 SW1 Orlita® PS 35-7-7

P OBI 075 SW1 Orlita® PS 600-40-40-40

Process Metering Pumps

2.20 Plunger Metering Pump Orlita® PS

Pump type	Plunger Ø	Stroke volume		Max. pressure					
			58	73	91	112	145	207	
	mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 18/	5	0.29	1.0	1.2	1.6	1.9	2.5	3.6	250
PS 18/	6	0.42	1.4	1.8	2.3	2.8	3.6	5.2	250
PS 18/	7	0.58	2.0	2.5	3.1	3.8	5.0	7.1	250
PS 18/	8	0.75	2.6	3.2	4.1	5.0	6.5	9.3	250
PS 18/	10	1.18	4.1	5.1	6.4	7.8	10.2	14.6	200
PS 18/	12	1.70	5.9	7.3	9.2	11.3	14.7	21.0	139
PS 18/	16	3.02	10.5	13.1	16.4	20.1	26.2	37.4	78
PS 18/	20	4.71	16.4	20.5	25.6	31.5	41.0	58.5	50
PS 18/	25	7.36	25.6	32.0	40.0	49.2	64.0	91.5	32
PS 18/	30	10.60	36.9	46.1	57.6	70.9	92.2	131.7	16
PS 18/	36	15.27	53.1	66.4	83.0	102.1	132.8	189.7	15
PS 18/	40	18.85	65.6	82.0	102.4	126.1	163.9	234.2	10
PS 18/	50	29.45	102.4	128.1	160.1	197.1	256.2	366.0	8

Pump type	Plunger Ø	Stroke volume		Max. pressure					
			58	73	91	112	145	207	
	mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 35/	7	0.77	2.6	3.3	4.1	5.1	6.7	9.5	630
PS 35/	8	1.01	3.5	4.3	5.4	6.7	8.7	12.4	400
PS 35/	10	1.57	5.4	6.8	8.5	10.5	13.6	19.5	400
PS 35/	12	2.26	7.8	9.8	12.3	15.1	19.6	28.1	250
PS 35/	16	4.02	13.9	17.4	21.8	26.9	34.9	49.9	156
PS 35/	20	6.28	21.8	27.3	34.1	42.0	54.6	78.0	100
PS 35/	25	9.82	34.1	42.7	53.3	65.7	85.4	122.0	64
PS 35/	30	14.14	49.2	61.5	76.8	94.6	122.9	175.7	44
PS 35/	36	20.36	70.8	88.5	110.6	136.2	177.1	253.0	30
PS 35/	40	25.13	87.4	109.3	136.6	168.2	218.6	312.3	25
PS 35/	50	39.27	136.6	170.8	213.5	262.8	341.6	488.0	16
PS 35/	65	66.37	230.9	288.6	360.8	444.1	577.3	824.8	9
PS 35/	80	100.53	349.8	437.3	546.6	672.7	874.6	1,249.4	6
PS 35/	100	157.08	546.6	683.3	854.1	1,051.2	1,366.5	1,952.2	4

Pump type	Plunger Ø	Stroke volume					capacit at strok	•	,	Max. pressure
			78	98	122	134	155	182	193	
	mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	l/h	l/h	bar
PS 80/	20	6.28	29	37	46	50	58	68	72	400
PS 80/	25	9.82	45	57	71	79	91	107	113	250
PS 80/	30	14.14	66	83	103	113	131	154	163	178
PS 80/	36	20.36	95	119	149	164	189	222	235	123
PS 80/	40	25.13	117	148	184	202	233	274	290	100
PS 80/	50	39.27	183	231	287	316	365	428	453	64
PS 80/	60	56.55	264	333	414	455	526	617	653	44
PS 80/	65	66.37	310	390	486	535	617	724	766	37
PS 80/	80	100.53	470	592	736	810	935	1,097	1,161	25
PS 80/	100	157.08	734	925	1,150	1,266	1,461	1,714	1,814	16
PS 80/	125	245.44	1,148	1,445	1,797	1,978	2,283	2,679	2,835	10
PS 80/	140	307.88	1,440	1,813	2,254	2,482	2,864	3,360	3,557	8
PS 80/	160	402.12	1,880	2,368	2,944	3,242	3,741	4,389	4,646	6

Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

Process Metering Pumps

2.20 Plunger Metering Pump Orlita® PS

Pump type	Plunger Ø	Stroke volume		Max. pressure					
			107	117	134	152	171	200	
	mm	ml/stro-	l/h	l/h	l/h	l/h	l/h	l/h	bar
		ke							
PS 180/	30	28.27	181	199	226	257	290	339	229
PS 180/	36	40.72	262	286	326	370	417	489	159
PS 180/	40	50.27	323	353	403	457	515	604	125
PS 180/	50	78.54	505	552	630	714	805	943	80
PS 180/	54	91.61	589	644	735	833	939	1,100	70
PS 180/	65	132.73	854	934	1,065	1,207	1,361	1,594	48
PS 180/	70	153.94	990	1,083	1,235	1,400	1,579	1,849	40
PS 180/	80	201.06	1,293	1,415	1,613	1,829	2,062	2,416	32
PS 180/	94	277.59	1,786	1,953	2,227	2,526	2,847	3,335	23
PS 180/	125	490.87	3,158	3,455	3,939	4,467	5,036	5,898	13
PS 180/	140	615.75	3,962	4,334	4,941	5,603	6,317	7,399	10
PS 180/	160	804.25	5,175	5,660	6,454	7,318	8,251	9,664	8
PS 180/	200	1,256.64	8,086	8,845	10,085	11,435	12,892	15,100	5

Pump type	Plunger Ø	Stroke volume		Max. capacity (theo.) in I/h at strokes/min (50 Hz)								
			99	117	134	156	173	204				
	mm	ml/stro- ke	l/h	l/h	l/h	l/h	l/h	l/h	bar			
PS 600/	30	28.27	168	198	227	264	293	345	400			
PS 600/	36	40.27	242	285	327	381	422	497	353			
PS 600/	40	50.27	299	352	403	470	521	614	286			
PS 600/	50	78.54	467	551	630	735	814	959	183			
PS 600/	54	91.61	545	643	735	857	949	1,119	157			
PS 600/	65	132.73	789	932	1,067	1,243	1,376	1,621	100			
PS 600/	70	153.94	916	1,080	1,236	1,441	1,596	1,880	93			
PS 600/	80	201.06	1,196	1,411	1,616	1,882	2,084	2,456	71			
PS 600/	94	277.59	1,651	1,949	2,229	2,599	2,878	3,391	51			
PS 600/	125	490.87	2,921	3,446	3,946	4,596	5,090	5,998	29			
PS 600/	140	615.75	3,664	4,323	4,951	5,766	6,385	7,523	23			
PS 600/	160	804.25	4,785	5,647	6,466	7,531	8,339	9,827	16			
PS 600/	200	1,256.64	7,477	8,823	10,104	11,768	13,030	15,354	11			

Pump type	Plunger Ø	Stroke volume		o.) in l/h (50 Hz)	Max. pressure				
			93	106	125	143	169	191	
	mm	ml/stro-	l/h	l/h	l/h	l/h	l/h	l/h	bar
		ke							
PS 1400/	40	75.40	419	480	565	647	766	864	400
PS 1400/	50	117.81	654	750	884	1,011	1,197	1,350	275
PS 1400/	60	169.65	943	1,080	1,273	1,456	1,724	1,944	190
PS 1400/	70	230.91	1,283	1,470	1,733	1,983	2,346	2,646	140
PS 1400/	80	301.59	1,676	1,920	2,263	2,590	3,065	3,456	107
PS 1400/	94	416.39	2,314	2,651	3,125	3,576	4,231	4,772	77
PS 1400/	125	736.31	4,093	4,689	5,527	6,323	7,483	8,439	44
PS 1400/	140	923.63	5,134	5,882	6,933	7,932	9,387	10,587	35
PS 1400/	160	1,206.37	6,706	7,683	9,055	10,360	12,261	13,827	25
PS 1400/	200	1,884.96	10,478	12,005	14,149	16,188	19,157	21,606	17
PS 1400/	280	3,694.51	20,538	23,530	27,732	31,729	37,549	42,348	8

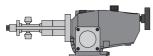
Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.21 Plunger Metering Pump Orlita® DR

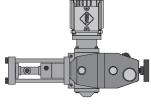
2.21.1


Plunger Metering Pump Orlita® DR

For the precise metering of high-viscosity and extremely high-viscosity media even containing solid fractions

Capacity range of single pump: 0 - 4,000 l/h, 400 - 4 bar

The plunger metering pump Orlita® DR does not need valves and can be operated within a broad stroke rate range. It is therefore suitable for use with high-viscosity and extremely high-viscosity media of up to 106 mPas within a wide temperature range from -40 °C to 400 °C, for example in the food industry.

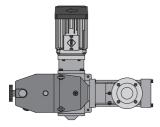

P ORL 0020 SW Orlita® DR

Orlita® DR plunger metering pumps (DR 15 to DR 150) are special pumps for high-viscosity and extremely high-viscosity media, which can also contain solids. The pump can be operated within a broad stroke rate range due to its operation without valves.

Your benefits

Optimum adaptation to processes with high-viscosity and extremely high-viscosity media, even containing solid fractions:

- Low-wear and precise operation even at high pressures, thanks to the rotary plunger with abrasionresistant / wear-resistant surface coating
- Valve-free operation guarantees a broad stroke rate range
- Wide range of uses: Operating pressure of up to 400 bar, temperature range of 40 $^{\circ}$ C to + 400 $^{\circ}$ C
- Pump direction can be selected depending on the fitting position of the plunger
- A reverse suction effect is continuously adjustable by rotating the pump head around its longitudinal axis
- Power end configuration ideal for installation in any position (vertical or horizontal)
- Excellent hydraulic efficiency
- 4 different gear ratios are available
- Customised designs are available on request


P_ORL_0021_SW Orlita® DR 15/12

P_ORL_0022_SW

Orlita® 150/90

Technical details

- DR 15 Stroke length: 0-15 mm, Rod force: 1,800 N
- DR 150 Stroke length: 0-32 mm, Rod force: 15,000 N
- Stroke length adjustment range: 0 100% in operation and idle
- Stroke length adjustment: manually by means of a manual adjustment wheel and scaled display (optionally with electric actuator or control drive)
- Metering reproducibility is better than ± 0.5% within the stroke length adjustment range of 10 to 100% under defined conditions and with proper installation
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors, motors for use in Exe and Exde areas and different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Temperature range 40 °C to + 400 °C
- The interplay between the plunger and cylinder responsible for the sealing effect, is selected depending on the viscosity
- Turret on the rear head end as a circular collecting vessel
- The turret is sealed by elastomer lip sealing rings
- Design in compliance with API 675 among others

P ORL 0023 SW Orlita® DR 150/90

Field of application

Metering of high-viscosity and extremely high-viscosity media containing some solid fractions, for example in the food industry.

2.

2.21 Plunger Metering Pump Orlita® DR

Pump type	Plunger Ø	Stroke volume	(Capacity max. (theo.) in I/h at strokes/min (50 Hz)						
			58	77	116					
	mm	ml/stroke	l/h	l/h	l/h	bar				
DR 15/	7	0.58	2.0	2.6	4.0	400				
	12	1.70	5.9	7.8	11.8	159				
	18	3.82	13.2	17.7	26.5	70				
	25	7.36	25.6	34.1	51.2	36				
	36	15.27	53.1	70.8	106.2	17				
	50	29.45	102.4	136.6	204.9	9				
	70	57.73	200.8	267.8	401.7	4				

Pump type	Plunger Ø	Stroke volume		Max. pres- sure			
			58	77	116	145	
	mm	ml/stroke	l/h	l/h	l/h	l/h	bar
DR 150/	12	3.62	12.5	16.7	25.1	31.4	400
	18	8.14	28.3	37.7	56.6	70.8	400
	25	15.71	54.6	72.8	109.3	136.6	250
	36	32.57	113.3	151.1	226.7	283.3	147
	50	62.83	218.6	291.5	437.3	546.6	76
	70	123.15	428.5	571.4	857.1	1,071.4	38
	90	203.58	708.4	944.5	1,416.8	1,771.1	23
	120	361.91	1,259.4	1,679.2	2,518.9	3,148.6	13
	140	492.60	1,714.2	2,285.6	3,428.5	4,285.6	9

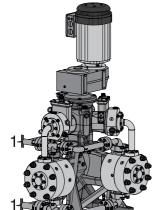
Important note:

All performance data is stated at 50 Hz motor frequency

Abridged presentation of our complete product range. Other types on request

2.22 Diaphragm Process Pump Zentriplex

2.22.1


Diaphragm Process Pump Zentriplex

The innovative process metering pump with the ideal dimensions and excellent efficiency. Capacity range 424 - 8,000 l/h, 367 - 36 bar

The Zentriplex guarantees excellent performance and provides outstanding efficiency as an oscillating triplex process diaphragm pump, with an extremely small footprint thanks to the space-saving arrangement of the pump and drive unit. It also stands out on account of its efficiency, as minimal material and labour are required.

The Zentriplex is an oscillating process diaphragm metering pump, which has a very small footprint thanks to its unconventional design, as the pump and drive unit are mounted above each other to save space. Diaphragm dosing heads and hydraulic units are arranged in a star pattern around the drive unit, resulting in minimised loads and significantly lower material and drive requirements. The Zentriplex is designed in compliance with API 674.

Process diaphragm pump Zentriplex (1= cu-

P PZ 0009 SW1

stomer-side connection)

Your benefits

Excellent conservation of resources:

- Excellent energy efficiency.
- Diaphragm replacement without dismantling the suction and discharge lines ensures cost-effective maintenance of the pump
- Low noise emissions
- Very quiet thanks to complete balancing of masses
- Only one connection required by the customer. Collective discharge and suction lines are integrated in
- Low flow rate pulsation
- Customised designs are available on request

Technical details

- Stroke length: 40 mm, Rod force: 18,000 N fixed stroke pump
- Metering reproducibility is better than ± 1% under defined conditions and with proper installation
- PTFE multi-layer diaphragm with electrical diaphragm rupture warning system via a contact
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of motor versions is available: Three-phase standard motors with varied adjustment ranges, motors for use in Exe and Exde areas, different flange designs for use in customer-specific
- Degree of protection: IP 55
- Design in compliance with API 674

Field of application

- Chemical industry
- Petrochemical industry
- Refineries
- Oil and gas industry

Process Metering Pumps

2.23 Diaphragm Process Pump TriPower®

Technical Data

Plunger Ø	Stroke volume		Theoretical pump capacity Q _{th} at a stroke rate n in rpm				Max. operating pressure	Efficiency at		Standard type of valve
	1/	120 [3]	145 [4]	170 [5]	200 [6]	220 [7]		1000/	500 /	
mm	ml/ stroke	l/h	l/h	l/h	l/h	l/h	bar	100% pressure	50% pressure	
25	58.90	424	512	601	707	778	367	0.78	0.83	DN 10
26	63.71	459	554	650	765	841	339	0.78	0.83	DN 10
30	84.82	611	738	865	1,018	1,120	255	0.81	0.85	DN 15
36	122.15	879	1,063	1,246	1,466	1,612	177	0.84	0.87	DN 20
44	182.46	1,314	1,587	1,861	2,190	2,409	118	0.85	0.88	DN 20
60	339.29	2,443	2,952	3,461	4,072	4,479	64	0.90	0.92	DN 25
70	461.81	3,325	4,018	4,711	5,542	6,096	47	0.90	0.92	DN 32
80	603.19	4,343	5,248	6,152	7,238	7,962	36	0.90	0.92	DN 32

Important note:

Abridged presentation of our complete product range. Other types on request

Materials in Contact With the Medium

Dosing head complete Dosing head	Diaphragm retaining screw	Diaphragm	Manifold Suction/pressure connector	Seal, manifold
Stainless steel 1.4404	Stainless steel 1.4462	PTFE multi-layer diaphragm	Stainless steel 1.4571	Viton O-ring with seamless FEP jacket
	Ball valve DN 10			
Suction/pressure connector	Seal valve/head	Valve ball	Valve seat	Valve housing
Stainless steel 1.4571	Stainless steel 1.4571	Al ₂ O ₃ ceramic	Stainless steel 1.4404	Stainless steel 1.4404
	Plate valve DN 15	/ DN 20 / DN 25 / DN 32		
Suction/pressure connector	Seal valve/head	Valve plate	Valve seat	Valve housing
Stainless steel 1.4571	Stainless steel 1.4571	Stainless steel 1.4462	Stainless steel 1.4571	Stainless steel 1.4571

Further material versions and details available on request.

Motor and Gearbox Data

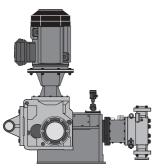
Motors and gearboxes from 7.5 to 15 kW are available for the Zentriplex product range. Further options and details available upon request.

Standard gear motor 7.5 kW, 9.2 kW, 11 kW, 15 kW	3 ph, IP 55	400/690V	50/60 Hz	Control range 1:5
Ex gear motor EExde IICT4 11 kW, 15 kW	3 ph, IP 65	400/690V	50/60 Hz	Control range 1:5
Standard external gearbox 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Standard external gearbox 11 kW15 kW	IP 55			NEMA flange version
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			Version according to DIN/ISO standard flange
Ex gearbox 2 IIGD c,k T4/T120C external 11 kW15 kW	IP 55			NEMW flange version

2.23 Diaphragm Process Pump TriPower®

2.23.1

Diaphragm Process Pump TriPower®


The product range for high capacities with a minimal footprint

Capacity range 4 - 38 m³/h, 415 - 50 bar

The process diaphragm pump TriPower® is perfect for use in the oil/gas industry or in the chemical industry. It is compact yet high-performance and has a multi-layer safety diaphragm. Its compact design enables it to be installed in the smallest space.

In the TriPower®, as in all triplex metering pumps, the pressure stroke of the individual dosing heads is displaced by a 120° crank angle, which results in a low-pulsation delivery flow without the use of pulsation dampers. This design is favoured in the chemical, oil and gas industries. The tried-and-tested Orlita® MF liquid end with PTFE double diaphragm system and integrated relief valve offers optimum process

P_TR_0003_SW1

P_TR_0003_SW3

Your benefits

Excellent process safety and reliability:

reliability through safe, leak-free metering.

- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integral hydraulic relief valve protects against overloading
- Safe, leak-free metering, even with aggressive, corrosive and flammable media.

Excellent conservation of resources:

- Maintenance-friendly and low operating costs
- Minimal monitoring and maintenance expense due to integrated pressurised lubrication system
- Low-pulsation metering without expensive pulsation damper
- Use in explosive atmospheres thanks to ATEX-compliant design
- Customised designs are available on request

- Stroke length: 60 mm, Rod force: 80,000 N
- Fixed stroke pump
- Metering reproducibility is better than \pm 0.5% under certain defined conditions and with proper installation. Observe the information in the operating instructions.
- PTFE multi-layer diaphragm with integral diaphragm rupture warning system
- Integrated hydraulic relief and bleed valve
- Wetted materials: Stainless steel, special designs are available on request
- A wide range of power end versions is available: Three-phase standard motors with varied adjustment ranges, motors for use in Exe and Exde areas, different flange designs for use in customer-specific motors
- Degree of protection: IP 55
- Design in compliance with API 674

Field of application

- Oil and gas industry
- Petrochemical industry
- Chemical industry

2.23 Diaphragm Process Pump TriPower®

Technical Data TriPower® Size B / 60 mm Stroke / MF Liquid Ends

Plunger Ø	Stroke volume	P	Pump capacity Q _{th} in I/h in total Triplex at a stroke rate n in 1/min			Max. pressure	Ef	ficiency at	Standard type of valve	
		100 [3]	130 [4]	170 [5]	200 [6]	230 [7]				
mm	cm ³ /	l/h	l/h	l/h	l/h	l/h	bar	100%	50%	
	stroke							pressure	pressure	
46	3 x 99.71	1,795	2,333	3,051	3,590	4,128	415	0.77	0.83	DN 32
55	3 x 142.55	2,566	3,336	4,362	5,132	5,902	320	0.81	0.85	DN 32
70	3 x 230.91	4,156	5,403	7,066	8,313	9,560	200	0.84	0.87	DN 40
90	3 x 381.70	6,871	8,932	11,680	13,741	15,802	125	0.90	0.90	DN 50
140	3 x 923.63	16,625	21,613	28,263	33,251	38,238	50	0.88	0.89	DN 80

Important note:

Abridged presentation of our complete product range. Other types on request

Materials in Contact With the Medium

1.4404

Dosing head complete

1.4462

Dosing head	Diaphragm re	etaining screw	Diaphragm
Stainless steel 1.4404	Stainless stee	1.4462	PTFE multi-layer diaphragm
Conical valve Valve	Suction/discharge valve housing	Seals	Valve seat

1.4571

1.4462

Hydraulic/mechanical accessories

Hydraulic / mechanical accessories for metering pumps such as injection valves and foot valves, can be found in Chapter 1.5, sorted by nominal width DN 8 ... DN 40:

Please observe the permitted pressure ratings or material combinations when selecting. Further accessories are available on request.

Electrical accessories

Accessories for metering pumps, such as frequency converters etc., can be found in Chapter 1.6, sorted by motor capacity DN $8\dots$ DN 40.

2.24.1 Return/Pressure Relief Valve, Spring-loaded

Spring-loaded valves, inline version, designed as pump valves, i.e. to cope with a very high number of load cycles. Also suitable for use without pulsation damper.

Features:

- Female thread on both sides or with sealing surface
- For bracing between 2 flanges
- PN 200 or PN 400
- Settings factory-set
- Standard design in stainless steel, hastelloy also available on request, as is Inconel

Also available heatable on request.

DN	Adjustable pressure	Construction	Order no.
6	2.0 bar	Ball	1020074
6	4.0 bar	Ball	1019224
6	8.0 – 9.0 bar	Ball	1019097
10	2.0 bar	Cone, fixed	1019649
10	3.0 – 6.0 bar	Cone, adjustable	1023053
10	8.0 – 14.0 bar	Cone, adjustable	1024065
16	2.0 bar	Cone, fixed	1017937
16	3.0 bar	Cone, fixed	1035266
16	4.5 – 5.4 bar	Cone, fixed	1017936
25	1.0 – 2.0 bar	Cone, fixed	1021843

2.24.2

Safety Valve

Regulations:

Safety valves are designed to comply with the following regulations:

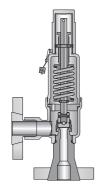
- Pressurised Vessel and Steam Boiler Directive
- TRD 421, 721
- TRB 403
- AD 2000 Bulletins A2 and A4
- DIN EN ISO 4126
- Pressure Equipment Directive 97/23/EC
- ASME Code, Sections II and VIII
- API 526, 520, 527

The relevant product-specific certificates are available to prove compliance with these regulations and thus also the safety of the products.

Safety valves carry a parts label (specification label) stipulating the following data:

- Order date (serial no.)
- Technical data
- Set pressure
- VdTÜV Parts test number
- CE mark with number of nominated centre
- Further data, e.g. UV stamp with ASME-approved safety valves

Following adjustment and inspection, every safety valve is sealed by the manufacturer.


Connectors: NPT threaded connectors, threaded sockets, flange mountings comply with DIN / ANSI. Other connections are available on request.

Material description	X 14 CrNiMo 17-12-2
Material no.	1.4404
ASME	316L

Dimensions, pressure ranges, weights	Standard 10 mm
Pressure rating at inlet	320 PN
Pressure rating at outlet	160 PN
Min. response pressure	0.1 bar
Max. response pressure (4373 / 4374)	68 bar
Narrowest flow cross-section	78.5 mm ²
Narrowest flow diameter	10 mm
Leg length (outlet / inlet)	30 mm / 33 mm
Pin length (G 1/2 / G 3/4)	15 mm / 16 mm
Flange design	100 mm
Height (H2 / H4)	137/162 mm
Weight	1.2 kg

P_AC_0231_SW

P_AC_0232_SW

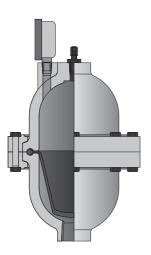
2.24.3

Pulsation Damper

Pulsation dampers with separating membrane / bubble / bellows for providing separation between the gas cushion and metered chemical are used for low-pulsation metering as well as for reducing flow resistance in long metering lines and with viscous media. The response pressure of the gas cushion should be approx. 60-80% of the operating pressure.

Important: A pressure relief valve should always be fitted with an adjustable back pressure valve when using a pulsation damper.

Bladder dampers, metal


0.066 - 379 | Volume Pressure 20.7 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, PTFE

Further material versions and details available on request.

P_AC_0258_SW1

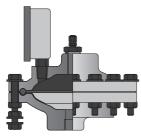
Bladder damper, plastic

Volume 0.066 - 191 **Pressure** 17.2 bar Material of bladder/diaphragm EPDM or FKM Housing material **PVDF**

Further material versions and details available on request.

P_AC_0259_SW1

P_AC_0260_SW1


Bladder damper, high pressure

Volume Pressure 793 bar Material of bladder/diaphragm EPDM or FKM

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

Diaphragm damper with PTFE diaphragm

Volume 0.20 137 bar Material of bladder/diaphragm PTFE

Housing material 316 L stainless steel, Hastelloy C, Alloy 20

Further material versions and details available on request.

P_AC_0261_SW1

Data Required for Specification of Metering Pump and Accessories

Pump Specification Data

Min./max. required feed rate	l/h
Available power supply	V, Hz
Min./max. operating temperature	°C
Properties of process chemical	
Name, concentration %	
Solids content %	
Dynamic viscosity mPa (= cP)	
Vapour pressure at operating temperature	bar
Remarks, e.g. abrasive,	
gaseous, flammable,	
corrosive towards	
Suction conditions:	
Min./max. suction lift	m
Min./max. positive suction head	m
Pressure in chemical tank	bar
Suction line length	m
Suction line diameter	mm
Discharge conditions:	
Min./max. back pressure	bar
Min./max. discharge head	m_
Min./max. negative discharge head	m
Discharge line length	m
Discharge line length Discharge line diameter	mm_
Number of valves and fittings in	
suction and discharge line	
3 .	
Data required for proportional dosing:	
Water flow Q min./max.	m ³ /h
Required final concentration	g/m³, ppm

Example:

A required dose in $mg/I = g/m^3 = ppm$

(Water flow Q max. 50 m³/h)

Pulse spacing (flow volume per pulse) of water meter 5 l.

Process fluid = sodium hypochlorite solution Na OCI with 12 % chlorine (by weight) = 120 g/kg = 150 g/l = 150 mg/ml

Selected dosing pump GALa 1005 NPB2 with 0.41 ml/per stroke volume, at max. 10800 strokes/h.

Variables: pump type, pulse spacing and concentration. The stroke rate (max. throughput I/h: pulse spacing I/pulse = 50,000 I/h: 5 I/pulse = 10000 pulses/h) must not exceed the max. stroke frequency (10800 strokes/h) of the dosing pump.

Feed quantity =
$$\frac{\text{water throughput Q max. (I/h) x stroke volume (I)}}{\text{pulse spacing (I)}} = \frac{50,000 \text{ l x } 0.00041 \text{ l}}{\text{h x 5 l}} = 4.1 \text{ l/h}$$

Final dose =
$$\frac{\text{concentration (mg/ml) x stroke volume (l)}}{\text{pulse spacing (l)}} = \frac{150 \text{ mg x 0.41 ml}}{\text{ml x 5 l}} = 12.3 \text{ mg/l}$$

= 12.3 g/m³
= 12.3 ppm chlorine Cl₂

pk_0_002

Resistance of Materials Used in Liquid Ends to the Chemicals Most Frequently Used

The data apply to standard conditions (20 °C, 1,013 mbar).

s	=	saturated solution in water
+	=	resistant
+/0	=	largely resistant
0	=	conditionally resistant
-	=	not resistant
n	=	resistance not known
=>	=	see
*	=	For bonded connections, the resistance of the adhesive (e.g. Tangit) is to be considered. (Materials of the types 'o' and '-' are not recommended!)
**	=	does not apply to glass fibre reinforced material

Concentration data are stated in weight percent, referred to aqueous solutions. If percentages are stated for the level of resistance, this level of resistance is only valid up to this concentration.

NOTE:

The elastomers **CSM** (**Hypalon®**) and **IIR** (**butyl rubber**) used as diaphragm materials in pulsation dampers have properties similar to **EPDM**.

PTFE is resistant to all chemicals in this list.

PTFE filled with carbon,however, is attacked by strong oxidants such as bromine (anhydrous) or concentrated acids (phosphoric acid, sulphuric acid, chromic acid).

The resistance of PVC-U adhesive joints with Tangit deviates from the list below with regard to the following chemicals:

Medium	Concentration range
Sulfochromic acid	\geq 70 % H ₂ SO ₄ + 5 % K ₂ Cr ₂ O ₇ /Na ₂ Cr ₂ O ₇
Chromic acid	≥ 10 % CrO ₃
Hydrochloric acid	≥ 25 % HCl
Hydrogen peroxide	≥ 5 % H ₂ O ₂
Hydrofluoric acid	≥ 0 % HF

Explanation of abbreviations used as column headings:

PMMA:	Polymethylmethacrylate (Acrylic) resistance
PVC:	Polyvinylchloride, rigid, (PVC-U) resistance
PP:	Polypropylene resistance
PVDF:	Polyvinylidene fluoride
1.4404:	Stainless steel 1.4404 & 1.4571 resistance
FKM:	Fluorine Rubber (e.g. Viton® A & B) resistance
EPDM:	Ethylene-Propylene-Dien-rubber resistance
PharMed®:	Pharmed [®] resistance
PE:	Polyethylene resistance
2.4819:	Hastelloy C-276 resistance
WPC:	water endangering class

 $\label{thm:policy} \mbox{Viton} \mbox{\ensuremath{^{\tiny \$}}} \mbox{ is a registered trademark of DuPont Dow Elastomers}$

Water endangering classes (WGK):

	1	=	slightly hazardous to water
1	2	=	hazardous to water
,	3	=	severely hazardous to water
	(X)	=	No classification. Classification according to conclusion by analogy. To be used under reserve.

Safety data sheets

Safety data sheets on our products in a number of different languages are provided on our website.

www.prominent.com/MSDS

1.1.2016

The data has been taken from relevant manufacturer's documentation and our own tests. Resistance of materials is also dependant on other factors, e.g. operating conditions, conditions of surfaces etc, and so this list must be treated as an initial guide only. It cannot claim to offer any guarantees. It should be taken into consideration in particular that usual dosing media are compounds, and their corrosiveness cannot be deducted simply by adding the corrosiveness of each single component. In such cases the chemical producers' data of the material compatibility are to be considered as a matter of prime importance for the material choice. A safety data sheet does not give this data and therefore cannot take the place of the technical documentation on the application.

Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
CH ₃ CHO	100%	-	-	0	-	+	-	+/0	-	+	+	2
CH ₃ CONH ₂	s	+	+	+	+	+	0	+	+/0	+	+	1
CH ₃ COOH	100%	-	50%	+	+	+	-	0	60%	70%	+	1
(CH ₃ CO) ₂ O	100%	-	-	0	-	+	-	+/0	+	0	+	1
CH ₃ COCH ₃	100%	-	-	+	-	+	-	+	-	+	+	1
C ₆ H ₅ COCH ₃	100%	-	n	+	-	+	-	+	n	+	+	
CH ₃ COCI	100%	-	+	n	-	0	+	-	0	n	+	1
CH ₃ COCH ₂ COCH ₃	100%	-	-	+	-	+	-	+	n	+	+	1
Ethylene												
achloro Ethane												
CH ₂ =CH-CN	100%	-	-	+	+	+	-	-	-	+	+	3
HOOC(CH ₂) ₄ COOH	s	+	+	+	+	+	+	+	+/0	+	+	1
CH ₂ CHCH ₂ OH	96%	-	0	+	+	+	-	+	0	+	+/o	2
AI(CH ₃ COO) ₃	s	+	+	+	+	+	+	+	+	+	+/0	1
AlBr ₃	s	+	+	+	+	n	+	+	+	+	+	2
AICI ₃	S	+	+	+	+	-	+	+	+	+	+	1
AIF ₃	10%	+	+	+	+	-	+	+	+	+	+/o	1
Al(OH) ₃	s	+	+	+	+	+	+	+	+	+	+	1
	s	+	+	+	+	+	+	+	+	+	+	1
AIPO ₄	s	+	+	+	+	+	+	+	+	+	+	1
$Al_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	1
	s	+	+/0	+	+	+	+	+	+	+	+	1
	s	+	+	+	+	+	+	+	+	+	+	1
· · ·	40%	+	+	+	+	+	+	+	+	+	+	1
	s	+	+	+	+	-	+	+	+	+	+/0	1
	s	+	0	+	+	0	+	+	+	+	+	1
· ·	30%	+	+	+	+	+		+	+	+	+	2
, , , , , , , , , , , , , , , , , , ,					(25 °C)							
NH ₄ NO ₃	s	+	+	+	+	+	+	+	+	+	+	1
(COONH ₄) ₂ * H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
	10%	+	+	+	+	+	+	+	+	+	+	1
	s	+	+	+	+	5%	+	+	+	+	5%	2
	S	+	+	+	+	10%	+	+	+	+	10%	1
(NH4)2SO4	s	+	+	+	+	10%	+	+	+	+	10%	1
(NH ₄) ₂ S	S	+	+	+	+	n	+	+	n	+	n	2
NH ₄ Al(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
C5H ₁₁ OH	100%	+	+	+	+	+	-	+	-	+	+	1
C ₆ H ₅ NH ₂	100%	-	-	+	+	+	-	+/0	0	+	+	2
C ₆ H ₅ NH ₂ * HCI	S	n	+	+	+	-	+/0	+/0	0	+	+	2
SbCl ₃	s	+	+	+	+	-	+	+	+	+	n	2
3 HCl + HNO ₃	100%	-	+	-	+	-	-	0	-	-	-	2
H ₃ AsO ₄	s	+	+	+	+	+	+	+	0	+	+	3
BaCO ₃	s	+	+	+	+	+	+	+	+	+	+	1
BaCl ₂	s	+	+	+	+	-	+	+	+	+	+	1
	S	+	+	+	+	+	+	+	+	+	+	1
	S	+	+	+	+	+	+	+	+	+	+	1
	S	+	+	+	+	+	+	+	+	+	+	1
BaS	S	+	+	+	+	+	+	+	+	+	+	(1)
	100%	-	-	+	-	+	+	+	-	0	+	1
	100%	-		0	+	+	0		-	0	+	3
CaHa												
C ₆ H ₆ C ₆ H ₅ SO ₃ H	10%	n	n		+	+	+	-	-	n	+	2
C_6H_6 $C_6H_5SO_3H$ C_6H_5COOH			n +	+		+ +	+ +	+	- +/o	n +	+ +	2
	CH ₃ CHO CH ₃ CONH ₂ CH ₃ COOH (CH ₃ CO) ₂ O CH ₃ COCH ₃ C ₆ H ₅ COCH ₃ CH ₃ COCH ₂ CH ₃ COCH ₂ CH ₃ COCH ₂ CH ₃ COCH ₂ COCH ₃ Dethylene achloro Ethane CH ₂ =CH-CN HOOC(CH ₂) ₄ COOH CH ₂ CHCH ₂ OH Al(CH ₃ COO) ₃ AlBr ₃ AlCl ₃ AlF ₃ Al(OH) ₃ Al(NO ₃) ₃ AlPO ₄ Al ₂ (SO ₄) ₃ CH ₃ COONH ₄ NH ₄ HCO ₃ (NH ₄) ₂ CO ₃ NH ₄ Cl NH ₄ F "NH ₄ OH" NH ₄ NO ₃ (COONH ₄) ₂ * H ₂ O NH ₄ ClO ₄ (NH ₄) ₂ S ₂ O ₈ (NH ₄) ₂ S ₂ O ₈ (NH ₄) ₂ SO ₄ (NH ₄) ₂ S NH ₄ Al(SO ₄) ₂ C5H ₁₁ OH C ₆ H ₅ NH ₂ C ₆ H ₅ NH ₂ * HCl SbCl ₃ 3 HCl + HNO ₃ H ₃ AsO ₄ BaCO ₃ BaCl ₂ Ba(NO ₃) ₂ BaSO ₄ BaS C ₆ H ₅ CHO	CH ₃ CHO 100% CH ₃ CONH ₂ s CH ₃ COOH 100% (CH ₃ CO) ₂ O 100% CH ₃ COCH ₃ 100% C ₆ H ₅ COCH ₃ 100% CH ₃ COCH ₂ 100% CH ₂ CHCH ₂ OH 96% Al(CH ₃ COO) ₃ s AlBr ₃ 10% Al(OH) ₃ s AlCl ₃ s AlCl ₃ s Al(OH) ₃ s Al(NO ₃) ₃ s AlPO ₄ s Al ₂ (SO ₄) ₃ c CH ₃ COONH ₄ s NH ₄ HCO ₃ s (NH ₄) ₂ CO ₃ 40% NH ₄ CI s NH ₄ F s "NH ₄ OH" 30% NH ₄ CIO ₄ 10% (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S ₂ O ₈ s (NH ₄) ₂ S s NH ₄ Al(SO ₄) ₂ s C5H ₁₁ OH 100% C ₆ H ₅ NH ₂ + HCI s SbCl ₃ s 3 HCI + HNO ₃ 100% H ₃ AsO ₄ s BaCO ₃ s BaCl ₂ s Ba(OH) ₂ s BaSO ₄ s BaS C ₆ H ₅ CHO 100%	CH ₃ CHO 100% - CH ₃ CONH ₂ s + CH ₃ COOH 100% - (CH ₃ CO) ₂ O 100% - CH ₃ COCH ₃ 100% - C ₆ H ₅ COCH ₃ 100% - CH ₃ COCH ₂ 100% - CH ₂ CHCH ₂ OH 96% - Al(CH ₃ COO) ₃ s + AlGl ₃ s + AlCl ₃ s + AlCl ₃ s + Al(OH) ₄ s + Al ₂ (SO ₄) ₃ s + CH ₃ COONH ₄ s + NH ₄ HCO ₃ s + NH ₄ CO ₃ 40% + NH ₄ CI s + NH ₄ F s + "NH ₄ OH" 30% + NH ₄ CIO ₄ 10% + COONH ₄) ₂ SO ₄ s + NH ₄ Al(SO ₄) ₂ s + CSH ₁₁ OH 100% - C ₆ H ₅ NH ₂ 100% - C ₆ H ₅ NH ₂ 100% - C ₆ H ₅ NH ₂ + HCl s n SbCl ₃ s + BaCO ₃ s + BaCO ₃ s + BaCO ₄ s + BaSO ₄ s + C ₆ H ₅ CHO 100% -	CH ₃ CHO 100% CH ₃ CONH ₂ S + + + CH ₃ COOH 100% - 50% (CH ₃ CO) ₂ O 100% CH ₃ COCH ₃ 100% C ₆ H ₅ COCH ₃ 100% C ₆ H ₅ COCH ₂ COCH ₃ 100% C ₆ H ₅ COCH ₂ COCH ₃ 100% C ₆ H ₅ COCH ₂ COCH ₃ 100% C ₆ H ₅ COCH ₂ COOH S + + + CH ₂ CHCH ₂ OH 96% - O AI(CH ₃ COO) ₃ S + + + AICl ₃ S + + + AI(Cl ₄ S + + + AI ₂ COONH ₄ S + + C ₆ H ₃ COONH ₄ S + + C ₆ H ₅ COONH ₄ S + + C ₆ H ₅ CHO 100% C ₆ H ₅ NH ₂ + C ₆ H ₅ NH ₂ S + + + C ₆ H ₅ NH ₂ S + + + C ₆ H ₅ NH ₂ S + + + C ₆ H ₅ NH ₂ S + + + C ₆ H ₅ NH ₂ S + + + S ₆ C ₆ H ₅ CHO 100%	CH ₃ CHO 100% 0 CH ₃ CONH ₂ S + + + + + CH ₃ COOH 100% - 50% + (CH ₃ CO) ₂ O 100% 0 CH ₃ COCH ₃ 100% + n C ₆ H ₅ COCH ₃ 100% + n C ₆ H ₅ COCH ₃ 100% + n CH ₃ COCH ₂ COCH ₃ 100% + n CH ₃ COCH ₂ COCH ₃ 100% + n CH ₃ COCH ₂ COCH ₃ 100% + n CH ₃ COCH ₂ COCH ₃ 100% + + CH ₂ CHCH ₂ OH 96% - 0 + AI(CH ₃ COO) ₃ S + + + + + CH ₂ CHCH ₂ OH 96% - 0 + AI(CH ₃ COO) ₃ S + + + + + AICl ₃ S + + + + + AICl ₃ S + + + + + AICl ₃ S + + + + + AI(OH) ₃ S + + + + + AI(CH ₃ COO) ₄ S + + + + + AI(CH ₃ COO) ₄ S + + + + + AI(CH ₃ COO) ₄ S + + + + + AI(CH ₃ COO) ₄ S + + + + + AI(CH ₃ COO) ₄ S + + + + + AI(CH ₃ COO) ₄ S + + + + + + AI(CH ₃ COO) ₄ S + + + + + + + + + + + + + + + + + +	CH ₃ CNOH ₂	CH₃CHO 100% - - 0 - +	CH3CHO	CH3CHO	CH3CHO	CH3CHO	CH_3CHO

1.1.2016

Chemical	Formula	Conc	PMMA		PP	PVDF				PharMed®	PE	2.4819	WPC
Benzyl Alcohol	C ₆ H ₅ CH ₂ OH	100%	-	-	+	+	+	+	-	+	+	+	1
Benzyl Benzoate	C ₆ H ₅ COOC ₇ H ₇	100%	-	-	+	0	+	+	-	-	+	+	2
Benzyl Chloride	C ₆ H ₅ CH ₂ CI	90%	-	n	0	+	+	+	-	-	0	+	2
Bitter Salt => Magnesium Sulph													
Bleach => Sodium Hypochlorite													
Blue Vitriol => Copper Sulphate													
Borax => Sodium Tetraborate	11.00												4
Boric Acid	H ₃ BO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Brine	D	\$	+	+/0	+	+	+/0	+	+	+	+	+	1
Bromine (dry)	Br ₂	100%	-	-	-	+	-	-	-	-	-	+	2
Bromine Water	Br ₂ + H ₂ O	S 4000/	-	+	-	+	-	-	-	n	-	n	(2)
Bromo Benzene	C ₆ H ₅ Br	100%	n	n	0	+	+	0	- ,	-	0	+	2
Bromochloro Methane	CH ₂ BrCl	100%	-	-	-	+	+	n	+/0	-	0	+	2
Bromochlorotrifluoro Ethane	HCCIBrCF ₃	100%	-	-	0	+	+	+	-	+	0	+	(3)
Butanediol	HOC ₄ H ₈ OH	10%	n	+	+	+	+	0	+	+	+	+	1
Butanetriol	$C_4H_{10}O_3$	S	+	+	+	+	+	0	+	+	+	+	1
Butanol	C ₄ H ₉ OH	100%	-	+	+	+	+	0	+/0	-	+	+	1
Butyl Acetate	C ₇ H ₁₃ O ₂	100%	-	-	+	+	+	-	-	+/0	+	+	1
Butyl Acetate	CH ₃ COOC ₄ H ₉	100%	-	-	0	+	+	-	+/0	+/0	-	+	1
Butyl Alcohol => Butanol													
Butyl Amine	C ₄ H ₉ NH ₂	100%	n	n	n	-	+	-	-	n	+	+	1
Butyl Benzoate	$C_6H_5COOC_4H_9$	100%	-	-	0	n	+	+	+	-	0	+	2
Butyl Mercaptane	C ₄ H ₉ SH	100%	n	n	n	+	n	+	-	n	n	n	3
Butyl Oleate	C ₂₂ H ₄₂ O ₂	100%	n	n	n	+	+	+	+/0	n	n	+	1
Butyl Stearate	$C_{22}H_{44}O_2$	100%	0	n	n	+	+	+	-	n	n	+	1
Butyraldehyde	C ₃ H ₇ CHO	100%	-	n	+	n	+	-	+/0	-	+	+	1
Butyric Acid	C ₃ H ₇ COOH	100%	5%	20%	+	+	+	+	+	+/0	+	+	1
Calcium Acetate	(CH ₃ COO) ₂ Ca	s	+	+	+	+	+	+	+	+	+	+	1
Calcium Bisulphite	Ca(HSO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Carbonate	CaCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Calcium Chloride	CaCl ₂	s	+	+	+	+	-	+	+	+	+	+	1
Calcium Cyanide	Ca(CN) ₂	S	+	+	+	+	n	+	+	+	+	n	3
Calcium Hydroxide	Ca(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Calcium Hypochlorite	Ca(OCI) ₂	S	+	+	0	+	-	0	+	+	+	+	2
Calcium Nitrate	Ca(NO ₃) ₂	S	+	50%	50%	+	+	+	+	+	+	+	1
Calcium Phosphate	Ca ₃ (PO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Calcium Sulphate	CaSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Calcium Sulphide	CaS	S	+	+	+	+	n	+	+	+	+	+	(2)
Calcium Sulphite	CaSO ₃	s	+	+	+	+	+	+	+	+	+	+	(1)
Calcium Thiosulphate	CaS ₂ O ₃	S	+	+	+	+	-	+	+	+	+	+	1
Carbolic Acid => Phenole	040203												
Carbon Disulphide	CS ₂	100%	-	-	0	+	+	+	-		0	+	2
Carbon Tetrachloride	CCI ₄	100%	-		-	+	+	+	-	-	0	+	3
Carbonic Acid	"H ₂ CO ₃ "	S	+	+	+	+	+	+	+	+	+	+	1
Caustic Potash => Potassium I			•	•	•	•	•	•	•	•	•	•	•
Caustic Soda => Sodium Hydro	•												
Chloric Acid	HCIO ₃	20%	+	+	-	+	-	0	0	+	10%	+	2
Chlorinated Lime => Calcium H			·								. 5 / 5		_
Chlorine Dioxide Solution	CIO ₂ + H ₂ O	0.5%	0	+	0	+	-	0	-		0	+	
Chlorine Water	Cl ₂ + H ₂ O	S.5 76	+	+	0	+	-	+	+	-	0	+	
Chloro Benzene	C ₆ H ₅ Cl	100%	-	-	+	+	+	+	-		0	+	2
Chloro Ethanol	CICH ₂ CH ₂ OH	100%		-	+	0	+	-	0	+	+	+	3
Chloro Ethylbenzene	C ₆ H ₄ ClC ₂ H ₅	100%		-	0	n	+	0	-	-	0	+	(2)
Chloro Phenole	C ₆ H ₄ OHCl	100%	-	n	+	+	+	n	-	-	+	+	2
Chloro Toluene		100%		-					-	-			2
	C ₇ H ₈ Cl		-		n	+ n	+	+			n	+	
Chloroacetone	CICH ₂ COCH ₃	100%	•	-	n	n	+	-	+	-	n	+	3
Chlorobutadiene	C ₄ H ₅ Cl	100%	-	-	n	n	+	+	-		n	+	1
Chloroform	CHCl ₃	100%		-	0	+	+	+	-	0	-	+	2
Chlorohydrin	C ₃ H ₅ OCI	100%	-	n	+	-	+	+	0	+	+	+	3
Chloroprene => Chlorobutadier													
Chlorosulphonic Acid	SO ₂ (OH)CI	100%	-	0	-	+	-	-	-	-	-	0	1
Chrome-alum => Potassium Ch	·												
Chromic Acid	H ₂ CrO ₄	50%	-	+*	0	+	10%	+	-	0	+	10%	3

1.1.2016 3

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Chromic-Sulphuric Acid	K ₂ CrO ₄ + H ₂ SO ₄	S	-	+*	-	+	n	n	n	-	-	n	3
Chromium Sulphate	$Cr_2(SO_4)_3$	s	+	+	+	+	+	+	+	+	+	+	1
Citric Acid	C ₆ H ₈ O ₇	s	+	+	+	+	+	+	+	+	+	+	1
Cobalt Chloride	CoCl ₂	s	+	+	+	+	-	+	+	+	+	+	2
Copper-II-Acetate	Cu(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Arsenite	Cu ₃ (AsO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+	3
Copper-II-Carbonate	CuCO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Copper-II-Chloride	CuCl ₂	S	+	+	+	+	1%	+	+	+	+	+	2
Copper-II-Cyanide	Cu(CN) ₂	s	+	+	+	+	+	+	+	+	+	+	(3)
Copper-II-Fluoride	CuF ₂	s	+	+	+	+	+	+	+	+	+	+	(2)
Copper-II-Nitrate	Cu(NO ₃) ₂	s	+	+	+	+	+	+	+	+	+	+/0	2
Copper-II-Sulphate	CuSO ₄	s	+	+	+	+	+	+	+	+	+	+	2
Cresols	C ₆ H ₄ CH ₃ OH	100%	0	0	+	+	+	+	-	-	+	+	2
Crotonaldehyde	CH ₃ C ₂ H ₂ CHO	100%	n	-	+	+	+	-	+	_	+	+	3
Cubic Nitre => Sodium Nitrate	0113021120110	10070	••			•							
Cumene => Isopropyl Benzene													
Cyclo Hexane	C ₆ H ₁₂	100%	+		+	+	+	+	-		+	0	1
Cyclohexanole	C ₆ H ₁₁ OH	100%	0	+/0	+	+	+	+	_	_	+	+	1
Cyclohexanone	* ''	100%	-	-		-	+	-	+/0	-			1
Cyclohexyl Alcohol => Cyclohex	C ₆ H ₁₀ O	100 /6			+		Т		1 /U		+	+	
Cyclohexylamine		100%	n	n	n	n	+	-	n	n	n	+	2
Decahydronaphthaline	C ₆ H ₁₁ NH ₂	100%	n -	+/0					n -	-			2
, ,	C ₁₀ H ₁₈	100%	-	+/0	0	+	n	0	-	-	0	+	۷
Decaline => Decahydronaphtha Dextrose => Glucose	lene												
Diacetonalcohol	C C	1000/				0							1
	C ₆ H ₁₂ O ₂	100%	-		+	0	+	-	+	-	+	+	1
Dibromoethane	C ₂ H ₄ Br ₂	100%	-	-	n	+	+	+	-	-	-	+	3
Dibutyl Ether	C ₄ H ₉ OC ₄ H ₉	100%	-	•	+	+	+	-	0	-	+	+	2
Dibutyl Phthalate	C ₁₆ H ₂₂ O ₄	100%	-	-	+	+	+	+	+/0	+	0	+	2
Dibutylamine	$(C_4H_9)_2NH$	100%	n	n	+	+	+	-	-	n	+	+	1
Dichloro Acetic Acid	CI ₂ CHCOOH	100%	-	+	+	+	+	-	+	0	+	+	1
Dichloro Benzene	C ₆ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	-	0	+	2
Dichloro Butan	C ₄ H ₈ Cl ₂	100%	-	-	0	+	+	+	-	-	0	+	3
Dichloro Butene	C ₄ H ₆ Cl ₂	100%	-	-	0	+	+	0	-	-	0	+	3
Dichloro Ethane	C ₂ H ₄ Cl ₂	100%	-	-	0	+	+	+	-	0	-	+	3
Dichloro Ethylene	C ₂ H ₂ Cl ₂	100%	-	-	0	+	+	0	-	0	-	+	2
Dichloro Methane	CH ₂ Cl ₂	100%	-	-	0	0	0	+	-	0	-	+	2
Dichloroisopropyl Ether	$(C_3H_6CI)_2O$	100%	-	-	0	n	+	0	0	-	0	+	(2)
Dicyclohexylamine	(C ₆ H ₁₂) ₂ NH	100%	-	-	0	n	+	-	-	-	0	+	2
Diethyleneglycol	$C_4H_{10}O_3$	s	+	+	+	+	+	+	+	+	+	+	1
Diethyleneglycolethyl Ether	C ₈ H ₁₈ O ₃	100%	n	n	+	+	+	n	+/0	0	+	+	1
Diethylether	C ₂ H ₅ OC ₂ H ₅	100%	-	-	0	+	+	-	-	0	0	+	1
Diglycolic Acid	C ₄ H ₆ O ₅	30%	+	+	+	+	+	+	n	+/0	+	+	3
Dihexyl Phthalate	C ₂₀ H ₂₆ O ₄	100%	-	-	+	+	+	-	n	+	+	+	(1)
Diisobutylketone	C ₉ H ₁₈ O	100%	-	-	+	+	+	-	+	-	+	+	1
Di-iso-nonyl Phthalate	C ₂₆ H ₄₂ O ₄	100%	-	-	+	+	+	n	n	+	+	+	1
Diisopropylketone	C ₇ H ₁₄ O	100%	-	-	+	+	+	-	+		+	+	1
Dimethyl Carbonate	(CH ₃ O) ₂ CO	100%	n	n	+	+	+	+	-	n	+	+	1
Dimethyl Ketone => Acetone	(0 /2												
Dimethyl Phthalate	C ₁₀ H ₁₀ O ₄	100%	-	-	+	+	+	-	+/0	+	+	+	1
Dimethylformamide	HCON(CH ₃) ₂	100%	-	-	+	-	+	-	+	+/0	+	+	1
Dimethylhydrazine	$H_2NN(CH_3)_2$	100%	n	n	+	n	+	-	+	n	+	+	3
Dioctyl Phthalate	$C_4H_4(COOC_8H_{17})_2$	100%	-	-	+	+	+	-	+/0	+	+	+	1
Dioxane	$C_4H_8O_2$	100%		-	0	-	+	-	+/0	-	+	+	1
Disodium	Na ₂ HPO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Hydrogenphosphate Disulfur Acid Oleum													
Disulphur Dichloride	S ₂ Cl ₂	100%	n	n	n	+	n	+	-	-	n	n	
DMF => Dimethylformamide	<i>L L</i>												
Engine Oils		100 %	n	+/0	+	+	+	+	-	-	+	+	2
Epsom salts => Magnesium Sul	phate												
Ethanol	C ₂ H ₅ OH	100%	-	+	+	+	+	-	+	+	+	+	1
Ethanol Amine	HOC ₂ H ₄ NH ₂	100%		n	+	-	+	-	+/0	0	+	+	1
Ethyl Acetate	CH ₃ COOC ₂ H ₅		-	-	35%	+	+	-	+/0	+/0	+	+	1
Ethyl Acrylate	C ₂ H ₃ COOC ₂ H ₅	100%			+	0	+	-	+/0	-	+	+	2
Lity/ Morylate	0211300002115	100/0				0	'		1/0				_

1.1.2016

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Ethyl Benzene	C ₆ H ₅ -C ₂ H ₅	100%	-	-	0	+	+	0	-	-	0	+	1
Ethyl Benzoate	C ₆ H ₅ COOC ₂ H ₅	100%	n	-	+	0	+	+	-	-	+	+	1
Ethyl Bromide	C ₂ H ₅ Br	100%	-	n	+	+	n	+	-	0	+	+	2
Ethyl Chloroacetate	CICH ₂ COOC ₂ H ₅	100%	-	0	+	+	+	+	-	-	+	+	2
Ethyl Chlorocarbonate	CICO ₂ C ₂ H ₅	100%	n	n	n	n	n	+	-	n	n	n	(2)
Ethyl Cyclopentane	C5H ₄ C ₂ H ₅	100%	+	+	+	+	+	+	-	-	+	+	(1)
Ethylacetoacetate	C ₆ H ₁₀ O ₃	100%	n	-	+	+	+	-	+/0	+/0	+	+	1
Ethylacrylic Acid	$C_6H_1OO_3$ C_4H_7COOH	100%				+	+		+/0				
			n	n	+			n		n	+	+	(1)
Ethylene Diamine	(CH ₂ NH ₂) ₂	100%	0	0	+	-	0	-	+	n	+	0	2
Ethylene Dibromide => Dibromo													
Ethylene Dichloride => Dichloro	Etnane												
Ethylene Glycol => Glycol	1100 11 00 11	1000/	-					_	. /-	_			_
Ethylenglycol Ethylether	HOC ₂ H ₄ OC ₂ H ₅	100%	n	n ,	+	+	+	n	+/0	0	+	+	1
Ethylhexanol	C ₈ H ₁₆ O	100%	n	+/0	+	+	+	+	+	-	+	+	2
Fatty Acids	R-COOH	100%	+	+	+	+	+	+	0	0	+	+	1
Ferric Chloride	FeCl ₃	S	+	+	+	+	-	+	+	+	+	+/0	1
Ferric Nitrate	Fe(NO ₃) ₃	S	+	+	+	+	+	+	+	+	+	+	1
Ferric Phosphate	FePO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Ferric Sulphate	$Fe_2(SO_4)_3$	S	+	+	+	+	0	+	+	+	+	+	1
Ferrous Chloride	FeCl ₂	S	+	+	+	+	-	+	+	+	+	+/0	1
Ferrous Sulphate	FeSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Fixing Salt => Sodium Thiosulph	nate												
Fluoro Benzene	C ₆ H ₅ F	100%	-	-	+	+	+	0	-	-	0	+	2
Fluoroboric Acid	HBF ₄	35%	+	+	+	+	0	+	+	-	+	+	1
Fluorosilicic Acid	H ₂ SiF ₆	100%	+	30%	30%	+	0	+	+	0	40%	+/0	2
Formaldehyde	CH ₂ O	40%	+	+	+	+	+	-	+/0	-	+	+	2
Formalin => Formaldehyde	_												
Formamide	HCONH ₂	100%	+	-	+	+	+	+	+	n	+	+	1
Formic Acid	HCOOH	s	-	+/0	+	+	+	-	-	+/0	+	+	1
Furane	C ₄ H ₄ O	100%	-	-	+	-	+	-	n	-	+	+	3
Furane Aldehyde	C ₅ H ₅ O ₂	100%	n	n	n	0	+	-	+/0	-	n	n	2
Furfuryl Alcohol	OC ₄ H ₃ CH ₂ OH	100%	-	-	+	0	+	n	+/0	-	+	+	1
Gallic Acid	C ₆ H ₂ (OH) ₃ COOH	5%	+	+	+	+	+	+	+/0	+	+	+	1
Gasoline	06112(011)300011	100 %		-	+	+	+	+	-	-	+	+	2
Glauber's Salt => Sodium Sulph	nate	100 /0			'	•	•				'		_
Glucose	C ₆ H ₁₂ O ₆	S	+	+	+	+	+	+	+	+	+	+	1
Glycerol	C ₃ H ₅ (OH) ₃	100%	+	+	+	+	+	+	+	+	+	+	1
Glycerol Triacetate	C ₃ H ₅ (CH ₃ COO) ₃	100%	n	n	+	+	+	-	+	n	+	+	1
•													
Glycine	NH ₂ CH ₂ COOH	10%	+	+	+	+	+	+	+	+	+	+	1
Glycol	C ₂ H ₄ (OH) ₂	100%	+	+	+	+	+	+	+	+	+	+	1
Glycolic Acid	CH ₂ OHCOOH	70%	+	37%	+	+	+	+	+	+/0	+	+	1
Gypsum => Calcium Sulphate													
Heptane	C ₇ H ₁₆	100%	+	+	+	+	+	+	-	-	+	+	1
Hexachloroplatinic Acid	H ₂ PtCl ₆	S	n	+	+	+	-	n	+	n	+	-	
Hexanal	C ₅ H ₁₁ CHO	100%	n	n	+	+	+	-	+/0	-	+	+	1
Hexane	C ₆ H ₁₄	100%	+	+	+	+	+	+	-	-	+	+	1
Hexanol	C ₆ H ₁₃ OH	100%	-	-	+	+	+	n	+	0	+	+	1
Hexantriol	$C_6H_9(OH)_3$	100%	n	n	+	+	+	+	+	n	+	+	1
Hexene	C ₆ H ₁₂	100%	n	+	+	+	+	+	-	-	+	+	1
Hydrazine Hydrate	N ₂ H ₄ * H ₂ O	S	+	+	+	+	+	n	+	0	+	+	3
Hydrobromic Acid	HBr	50%	+	+	+	+	-	-	+	-	+	0	1
Hydrochloric Acid	HCI	38%	32%	+ *	+	+	-	+	0	0	+	0	1
Hydrofluoric Acid	HF	80%	-	40%	40% **	+	-	+	0	-	40%	+/0	1
Hydrogen Cyanide	HCN	S	+	+	+	+	+	+	+	+	+	+	3
Hydrogen Peroxide	H_2O_2	90%	40%	40%*	30%	+	+	30%	30%	+	+	+	1
Hydroiodic Acid	HI	S	+	+	+	+	-	-	n	-	+	n	1
Hydroquinone	C ₆ H ₄ (OH) ₂	s	0	+	+	+	+	+	-	+/0	+	+	2
Hydroxylamine Sulphate	$(NH_2OH)_2 * H_2SO_4$	10%	+	+	+	+	+	+	+	+	+	+	2
Hypochlorous Acid	HOCI	S	+	+	0	+	-	+	+/0	+	0	+	(1)
lodine		S	0	-	+	+	-	+	+/0	+	0	+/0	(1)
Iron Vitriol => Ferrous Sulphate	l ₂	3			,	1			170			170	
Isobutanol => Isobutyl Alcohol													
Isobutyl Alcohol	C ₂ H ₅ CH(OH)CH ₃	100%	-	+	+	+	+	+	+	0	+	+	1

1.1.2016 5

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Isopropanol => Isopropyl Alcohol													
Isopropyl Acetate	CH ₃ COOCH(CH ₃) ₂	100%	-	-	+	+	+	-	+/0	+/0	+	+	1
Isopropyl Alcohol	(CH ₃) ₂ CHOH	100%	-	+/0	+	+	+	+	+	0	+	+	1
Isopropyl Benzene	$C_6H_5CH(CH_3)_2$	100%	-	-	0	+	+	+	-	-	0	+	1
Isopropyl Chloride	CH ₃ CHClCH ₃	80%	-	-	0	+	+	+	-	0	0	+/0	2
Isopropyl Ether	C ₆ H ₁₄ O	100%	-		0	+	+		_	0	0	+	1
Kitchen Salt => Sodium Chloride		10070				'	•			0		•	
Lactic Acid	C ₃ H ₆ O ₃	100%	-	+	+	+	+/0	+	10%	+/0	+	+	1
Lead Acetate	Pb(CH ₃ COO) ₂	S	+	+	+	+	+	+	+	+	+	+	2
Lead Nitrate	Pb(NO ₃) ₂	50%	+	+		+	+	+	+	+	+	+	2
Lead Sugar => Lead Acetate	1 b(1103)2	30 /6	т	т	+	т	т	т	т	т	т	т	
Lead Sulphate	PbSO ₄	s	+	+	+	+	+	+	+	+	+	+	(2)
Lead Tetraethyl	Pb(C ₂ H ₅) ₄	100%	+	+	+	+	+	+	-	n	+	+	3
Lime Milk => Calcium Hydroxide	FD(O2115)4	100 /6	т	т	т	т	т	т	_	11	т	Ŧ	0
Liquid Ammonia => Ammonium F	Hydroxide												
Lithium Bromide	LiBr	s	+	+	+	+	+	+	+	+	+	+	1
Lithium Chloride	LiCl	S	+	+	+	+	-	+	+	+	+	n	1
Lunar Caustic => Silver Nitrate	LIOI	3	т	т	т	т		т	т	т	т	11	'
Magnesium Carbonate	MgCO ₃	S	+	+	+	+	+	+	+	+	+	+/0	1
Magnesium Chloride	MgCl ₂	s	+	+	+	+	0	+	+	+	+	+/	1
Magnesium Hydroxide	Mg(OH) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Magnesium Nitrate	$Mg(NO_3)_2$	s	+	+	+	+	+	+	+	+	+	+	1
Magnesium Sulphate		S	+	+	+	+	+	+	+	+	+	+/0	1
Maleic Acid	MgSO ₄												1
Malic Acid	C ₄ H ₄ O ₄	S	+	+	+	+	+	+	+	0	+	+	1
	C ₄ H ₆ O ₅	S	+	+	+	+	+	+	+	+	+	+	
Manganese-II-Chloride	MnCl ₂	S	+	+	+	+		+	+	+	+	+	1
Manganese-II-Sulphate	MnSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
MEK => Methyl Ethyl Ketone	II.	1000/											0
Mercury	Hg	100%	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Chloride	HgCl ₂	S	+	+	+	+	-	+	+	+	+	+	3
Mercury-II-Cyanide	Hg(CN) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Mercury-II-Nitrate	Hg(NO ₃) ₂	S	+	+	+	+	+	+	+	+	+	+	3
Mesityl Oxide	C ₆ H ₁₀ O	100%	-	-	n	n	+	-	+/0	-	n	+	1
Methacrylic Acid	C ₃ H ₅ COOH	100%	n	n	+	+	+	0	+/0	+/0	+	+	1
Methanol	CH ₃ OH	100%	-	-	+	+	+	0	+	+/0	+	+	1
Methoxybutanol	CH ₃ O(CH ₂) ₄ OH	100%	-	-	+	+	+	+	0	0	+	+	(1)
Methyl Acetate	CH ₃ COOCH ₃	60%	-	-	+	+	+	-	+/0	+/0	+	+	2
Methyl Acrylate	C ₂ H ₃ COOCH ₃	100%	-	-	+	+	+	-	+/0	0	+	+	2
Methyl Benzoate	C ₆ H ₅ COOCH ₃	100%	-	-	+	0	+	+	-	-	+	+	2
Methyl Catechol	C ₆ H ₃ (OH) ₂ CH ₃	S	+	+	+	+	+	+	-	+0	+	+	(1)
Methyl Cellulose		s	+	+	+	+	+	+	+	+	+	+	1
Methyl Chloroacetate	CICH ₂ COOCH ₃	100%	-	0	+	+	+	0	-	-	+	+	2
Methyl Cyclopentane	C ₅ H ₉ CH ₃	100%	+	+	+	+	+	+	-	-	+	+	(1)
Methyl Dichloroacetate	Cl ₂ CHCOOCH ₃	100%	-	-	+	n	+	-	n	-	+	+	2
Methyl Ethyl Ketone	CH ₃ COC ₂ H ₅	100%	-	-	+	-	+	-	+	-	+	+	1
Methyl Glycol	$C_3H_8O_2$	100%	+	+	+	+	+	-	+/0	+	+	+	1
Methyl Isobutyl Ketone	CH ₃ COC ₄ H ₉	100%	-	-	+	-	+	-	0	-	+	+	1
Methyl Isopropyl Ketone	CH ₃ COC ₃ H ₇	100%	-	-	+	-	+	-	+/0	-	+	+	1
Methyl Methacrylate	C II COOCII	100%	-	-	+	+	+	-	-	-	+	+	1
Methyl Oleate	C ₃ H ₅ COOCH ₃												1
	C ₃ H ₅ COOCH ₃	100%	n	n	+	+	+	+	+/0	n	+	+	•
Methyl Salicylate	C ₁₇ H ₃₃ COOCH ₃	100% 100%	n -	n -	+ +	+	+	+ n	+/0	n -	+	+	1
Methyl Salicylate Methylacetyl Acetate	C ₁₇ H ₃₃ COOCH ₃ HOC ₆ H ₄ COOCH ₃												
	C ₁₇ H ₃₃ COOCH ₃ HOC ₆ H ₄ COOCH ₃ C ₅ H ₈ O ₃	100%	-	-	+	+	+	n	+/0	-	+	+	1
Methylacetyl Acetate	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2	100% 100%	-	-	+	+	+	n -	+/o +/o	- 0	+	+	1 2
Methylacetyl Acetate Methylamine	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2	100% 100%	-	-	+	+	+	n -	+/o +/o	- 0	+	+	1 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro	C ₁₇ H ₃₃ COOCH ₃ HOC ₆ H ₄ COOCH ₃ C ₅ H ₈ O ₃ CH ₃ NH ₂ Methane	100% 100%	- - +	-	+	+	+	n -	+/o +/o	- 0	+	+	1 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro N Mirabilit => Sodium Sulphate	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2 Wethane C_4H_9ON	100% 100% 32%	- - +	- - 0	+ + + +	+ + 0	+ + +	n - -	+/o +/o +	- 0 +	+ + + +	+ + +	1 2 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro Mirabilit => Sodium Sulphate Morpholine	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2 Wethane C_4H_9ON	100% 100% 32%	- - +	- - 0	+ + + +	+ + 0	+ + +	n - -	+/o +/o +	- 0 +	+ + + +	+ + +	1 2 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro N Mirabilit => Sodium Sulphate Morpholine Muriatic Acid => Hydrochloric Ac	C ₁₇ H ₃₃ COOCH ₃ HOC ₆ H ₄ COOCH ₃ C ₅ H ₈ O ₃ CH ₃ NH ₂ Methane C ₄ H ₉ ON	100% 100% 32%	- - +	- - 0	+ + + +	+ + 0	+ + +	n - -	+/o +/o +	- 0 +	+ + + +	+ + +	1 2 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro N Mirabilit => Sodium Sulphate Morpholine Muriatic Acid => Hydrochloric Ac Natron => Sodium Bicarbonate	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2 Methane C_4H_9ON id $(CH_3COO)_2Ni$	100% 100% 32% 100%	+	- - 0	+ + + +	+ + 0	+ + + +	n - -	+/o +/o +	- 0 +	+ + + +	+ + + +	1 2 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro N Mirabilit => Sodium Sulphate Morpholine Muriatic Acid => Hydrochloric Ac Natron => Sodium Bicarbonate Nickel-II-Acetate	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2 $Methane$ C_4H_9ON d	100% 100% 32% 100%	- - +	- - 0	+ + + + +	+ + 0	+ + + + +	n - - n	+/0 +/0 + n	- 0 + + + + + + + + + + + + + + + + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + + +	1 2 2 2
Methylacetyl Acetate Methylamine Methylene Chloride => Dichloro Mirabilit => Sodium Sulphate Morpholine Muriatic Acid => Hydrochloric Ac Natron => Sodium Bicarbonate Nickel-II-Acetate Nickel-II-Chloride	$C_{17}H_{33}COOCH_3$ $HOC_6H_4COOCH_3$ $C_5H_8O_3$ CH_3NH_2 Methane C_4H_9ON id $(CH_3COO)_2Ni$	100% 100% 32% 100% s	- + +	- 0	+ + + + + + +	+ + 0	+ + + + + .	n - - n	+/o +/o + n	- 0 + + + + +	+ + + + + + + +	+ + + + + + +	1 2 2 2 (2) 2

1.1.2016

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Nitric Acid	HNO ₃	99%	10%	10%*	50%	65%	50%	65%	10%	35%	50%	65%	1
Nitro Methane	CH ₃ NO ₂	100%	-	-	+	0	+	-	+/0	-	+	+	2
Nitro Propane	(CH ₃) ₂ CHNO ₂	100%	-	-	+	n	+	-	+/0	-	+	+	2
Nitro Toluene	C ₆ H ₄ NO ₂ CH ₃	100%	-	-	+	+	+	0	-	-	+	+	2
Octane	C ₈ H ₁₈	100%	0	+	+	+	+	+	-	-	+	+	1
Octanol	C ₈ H ₁₇ OH	100%	-	-	+	+	+	+	+	-	+	+	1
Octyl Cresol	C ₁ 5H ₂₄ O	100%	-	-	+	+	+	0	n	-	+	+	(1)
Oil => Engine Oils	0 10.1.240												(- /
Oleum	H ₂ SO ₄ + SO ₃	s	n	_	-	_	+	+	-	+	-	+	2
Orthophosphoric Acid => Phosph							•			•		•	_
Oxalic Acid	(COOH) ₂	s	+	+	+	+	10%	+	+	+/0	+	+/0	1
Pentane	C ₅ H ₁₂	100%	+	+	+	+	+	+	-	-	+	+	1
Pentanol => Amyl Alcohol	051112	10070		•	'	'	1						•
Perchloric Acid	HCIO ₄	70%	n	10%	10%			+	+/0	+	+	n	1
		70%	11	10%	10%	+	-	+	+/0	+	+	11	
Perchloroethylene => Tetrachloro													
Perhydrol => Hydrogen Peroxide Petroleum Ether		1000/		. /-									1
	CnH _{2n+2}	100%	+	+/0	+	+	+	+	-	-	+	+	1
Phenole Rhand Fahad Fahan	C ₆ H ₅ OH	100%	-		+	+	+	+	•	+	+	+	2
Phenyl Ethyl Ether	C ₆ H ₅ OC ₂ H ₅	100%	-	-	+	n	+	-	-	-	+	+	2
Phenyl Hydrazine	C ₆ H5NHNH ₂	100%	-	-	0	+	+	0	-	-	0	+	2
Phosphoric Acid	H ₃ PO ₄	85%	50%	+	+	+	+	+	+	+	+	+	1
Phosphorous Oxychloride	POCI ₃	100%	-	-	+	+	n	+	+	n	+	+	1
Phosphorous Trichloride	PCI ₃	100%	-	-	+	+	+	0	+	+/0	+	+	1
Phthalic Acid	C ₆ H ₄ (COOH) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Picric Acid	$C_6H_2(NO_3)_3OH$	s	+	+	+	+	+	+	+	-	+	+	2
Piperidine	C ₅ H ₁₁ N	100%	-	-	n	n	+	-	-	-	n	+	2
Potash Alum => Potassium Alum	inium Sulphate												
Potassium Acetate	CH ₃ COOK	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Aluminium Sulphate	KAI(SO ₄) ₂	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Bicarbonate	KHCO ₃	40%	+	+	+	+	+	+	+	+	+	+/0	1
Potassium Bifluoride	KHF ₂	s	n	+	+	+	+	+	+	+	+	+	1
Potassium Bisulphate	KHSO ₄	5%	+	+	+	+	+	+	+	+	+	+	1
Potassium Bitartrate	KC ₄ H ₅ O ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Borate	KBO ₂	S	+	+	+	+	+	+	+	+	+	+	(1)
Potassium Bromate	KBrO ₃	s	+	+	+	+	+	+	+	+	+	+	2
Potassium Bromide	KBr	s	+	+	+	+	10%	+	+	+	+	0,1	1
Potassium Carbonate	K ₂ CO ₃	s	+	+	+	+	+	+	+	55%	+	+	1
Potassium Chlorate	KCIO ₃	S	+	+	+	+	+	+	+	+	+	+	2
Potassium Chloride	KCIO ₃	S	+				-			+		+/0	1
Potassium Chromate		10%	+	+	+	+		+	+	+	+		3
	K ₂ CrO ₄						+	+			+	+	
Potassium Chrome Sulphate	KCr(SO ₄) ₂	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanate	KOCN	S	+	+	+	+	+	+	+	+	+	+	2
Potassium Cyanide	KCN	S	+	+	+	+	5%	+	+	+	+	5%	3
Potassium Cyanoferrate II	K ₄ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Cyanoferrate III	K ₃ Fe(CN) ₆	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Dichromate	K ₂ Cr ₂ O ₇	S	+	+	+	+	25%	+	+	+	+	10%	3
Potassium Fluoride	KF	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Hydroxyde	КОН	50%	+	+	+	+ (25 °C)	+	-	+	10%	+	+	1
Potassium Iodide	KI	9	_	_	+	(25 °C)	_	_	_	_	+	_	1
Potassium Nitrate	KNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Potassium Perchlorate	-												
	KCIO ₄	S	+	+	+	+	n	+	+	+	+	+	1
Potassium Permanganate	KMnO ₄	S	+	+	+	+	+	+	+	6%	+	+	2
Potassium Persulphate	K ₂ S ₂ O ₈	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Phosphate	KH ₂ PO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Pyrochromate => Pota													
Potassium Sulphate	K ₂ SO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Potassium Sulphite	K ₂ SO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Propionic Acid	C ₂ H ₅ COOH	100%	0	+	+	+	+	+	+	+/0	+	+	1
Propionitrile	CH ₃ CH ₂ CN	100%	n	n	+	+	+	+	-	-	+	+	2
Propyl Acetate	CH ₃ COOC ₃ H ₇	100%	-	-	+	+	+	-	+/0	-	+	+	1
Propylene Glycol	CH ₃ CHOHCH ₂ OH	100%	+	+	+	+	+	+	+	+	+	+	1
Prussic Acid => Hydrogen Cyanic													
Pyridine	C ₅ H ₅ N	100%	-	-	0	-	+	-	-	0	+	+	2
•	- 00												

1.1.2016 7

Chemical	Formula	Conc	РММА	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Pyrrole	C ₄ H ₄ NH	100%	n	n	+	n	+	-	-	-	+	+	2
Roman Vitriol => Copper Sulpha	1 1												
Salicylic Acid	HOC ₆ H ₄ COOH	s	+	+	+	+	+	+	+	+	+	+/0	1
Salmiac => Ammonium Chloride	• .												
Saltpeter => Potassium Nitrate													
Silic Acid	SiO ₂ * x H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Silver Bromide	AgBr	S	+	+	+	+	+/0	+	+	+	+	+	1
Silver Chloride	AgCI	s	+	+	+	+	-	+	+	+	+	+/0	1
Silver Nitrate	AgNO ₃	S	+	+	+	+	+	+	+	+	+	+/0	3
Slaked Lime => Calcium Hydrox	ide												
Soda => Sodium Carbonate													
Sodium Acetate	NaCH ₃ COO	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Benzoate	C ₆ H ₅ COONa	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bicarbonate	NaHCO ₃	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphate	NaHSO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bisulphite	NaHSO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Borate	NaBO ₂	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Bromate	NaBrO ₃	s	+	+	+	+	+	+	+	+	+	+	3
Sodium Bromide	NaBr	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Carbonate	Na ₂ CO ₃	S	+	+	+	+	+/0	+	+	+	+	+	1
Sodium Chlorate	NaClO ₃	S	+	+	+	+	+	+	+	+	+	+	2
Sodium Chloride	NaCl	S	+	+	+	+	-	+	+	+	+	+	1
Sodium Chlorite	NaClO ₂	24%	+	+	+	+	10%	+	+	+	+	10%	2
Sodium Chromate	Na ₂ CrO ₄	s	+	+	+	+	+	+	+	+	+	+	3
Sodium Cyanide	NaCN	S	+	+	+	+	+	+	+	+	+	+	3
Sodium Dichromate	Na ₂ Cr ₂ O ₇	S	+	+	+	+	+	+	+	+	+	+	3
Sodium Dithionite	Na ₂ S ₂ O ₄	S	+	10%	10%	+	+	n	n	+	10%	+/0	1
Sodium Fluoride	NaF	S	+	+	+	+	10%	+	+	+	+	+	1
Sodium Hydrogen Sulphate => S	·												
Sodium Hydroxide	NaOH	50%	+	+	+	+ (60% 25 °C)	/+	-	+	30%	+	+	1
Sodium Hypochlorite	NaOCI + NaCI	12%	+	+	0	+	-	+	+	+	0	> 10%	2
Sodium Iodide	Nal	S	+	+	+	+	+	+	+	+	+	+	1
Sodium Metaphosphate	(NaPO ₃) _n	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrate	NaNO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Nitrite	NaNO ₂	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Oxalate	Na ₂ C ₂ O ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Perborate	NaBO ₂ *H ₂ O ₂	s	+	+/0	+	+	+	+	+	+	+	+/0	1
Sodium Perchlorate	NaClO ₄	s	+	+	+	+	10%	+	+	+	+	10%	1
Sodium Peroxide	Na ₂ O ₂	S	+	+	+	+	+	+	+	n	-	+	1
Sodium Persulphate	Na ₂ S ₂ O ₈	s	n	+	+	+	+	+	+	+	+	+	1
Sodium Pyrosulphite	Na ₂ S ₂ O ₅	s	+	+	+	+	+	n	n	+	+	+	1
Sodium Salicylate	C ₆ H ₄ (OH)COONa	s	+	+/0	+	+	+	+	+	+	+	+	1
Sodium Silicate	Na ₂ SiO ₃	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphate	Na ₂ SO ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Sulphide	Na ₂ S	s	+	+	+	+	+	+	+	+	+	+	2
Sodium Sulphite	Na ₂ SO ₃	s	+	+	+	+	50%	+	+	+	+	50%	1
Sodium Tetraborate	Na ₂ B ₄ O ₇ * 10 H ₂ O	s	+	+	+	+	+	+	+	+	+	+	1
Sodium Thiosulphate	Na ₂ S ₂ O ₃	s	+	+	+	+	25%	+	+	+	+	25%	1
Sodium Tripolyphosphate	Na ₅ P ₃ O ₁₀	s	+	+	+	+	+	+/0	+	+	+	+	1
Starch	(C ₆ H ₁₀ O ₅) _n	s	+	+	+	+	+	+	n	+	+	+	1
Starch Gum	(0 ₀ 1005/n	s	+	+	+	+	+	+	+	+	+	+	1
Styrene	C ₆ H ₅ CHCH ₂	100%	-	-	0	+	+	0	-	-	0	+	2
Sublimate => Mercury-II-Chloride		/ -											
Succinic Acid	C ₄ H ₆ O ₄	s	+	+	+	+	+	+	+	+	+	+	1
Sugar Syrup	40 - 4	s	+	+	+	+	+	+	+	+	+	+	1
Sulphur Chloride => Disulphur D	ichloride												
Sulphuric Acid	H ₂ SO ₄	98%	30%	50%	85%	+	20%	+	+	30%	80%	+	1
Sulphuric Acid, fuming> Oleun													
Sulphurous Acid	H ₂ SO ₃	S	+	+	+	+	10%	+	+	+	+	+	(1)
Sulphuryl Chloride	SO ₂ Cl ₂	100%	-	-	-	0	n	+	0	-	-	n	1
Tannic Acid	C ₇₆ H ₅₂ O ₄₆	50%	+	+	+	+	+	+	+	+	+	+	1
Tartaric Acid	$C_4H_6O_6$	S	50%	+	+	+	+	+	+/0	+	+	+	1
Tetrachloro Ethane	$C_2H_2CI_4$	100%	-	-	0	+	+	0	-	0	0	+	3
	224												

1.1.2016

Chemical	Formula	Conc	PMMA	PVC	PP	PVDF	1.4404	FKM	EPDM	PharMed®	PE	2.4819	WPC
Tetrachloro Ethylene	C ₂ Cl ₄	100%	-	-	0	+	+	0	-	0	0	+	3
Tetrachloromethane => Carbon	Tetrachloride												
Tetrahydro Furane	C ₄ H ₈ O	100%	-	-	0	-	+	-	-	-	0	+	1
Tetrahydro Naphthalene	C ₁₀ H ₁₂	100%	-	-	-	+	+	+	-	-	0	+	3
Tetralin => Tetrahydro Naphthale	ene												
THF => Tetrahydrofurane													
Thionyl Chloride	SOCI ₂	100%	-	-	-	+	n	+	+	+	-	n	1
Thiophene	C ₄ H ₄ S	100%	n	-	0	n	+	-	-	-	0	+	3
Tin-II-Chloride	SnCl ₂	S	+	0	+	+	-	+	+	+	+	+/0	1
Tin-II-Sulphate	SnSO ₄	S	n	+	+	+	+	+	+	+	+	+/0	(1)
Tin-IV-Chloride	SnCl ₄	s	n	+	+	+	-	+	+	+	+	+	1
Titanium Tetrachloride	TiCl ₄	100%	n	n	n	+	n	0	-	n	n	n	1
Toluene	C ₆ H ₅ CH ₃	100%	-	-	0	+	+	0	-	-	0	+	2
Toluene Diisocyanate	C ₇ H ₃ (NCO) ₂	100%	n	n	+	+	+	-	+/0	n	+	+	2
Tributyl Phosphate	$(C_4H_9)_3PO_4$	100%	n	-	+	+	+	-	+	+	+	+	1
Trichloro Ethane	CCI ₃ CH ₃	100%	-	-	0	+	+	+	-	0	0	+	3
Trichloro Ethylene	C ₂ HCl ₃	100%	-	-	0	+	+/0	0	-	0	0	+	3
Trichloro Methane => Chloroforn	n												
Trichloroacetaldehyde Hydrate	CCI ₃ CH(OH) ₂	s	-	-	0	-	+	0	0	n	+	+	2
Trichloroacetic Acid	CCI ₃ COOH	50%	-	+	+	+	-	-	0	+/0	+	+	1
Tricresyl Phosphate	$(C_7H_7)_3PO_4$	90%	-	-	+	n	+	0	+	+	+	+	2
Triethanol Amine	$N(C_2H_4OH)_3$	100%	+	0	+	n	+	-	+/0	0	+	+	1
Trilene => Trichloro Ethane													
Trioctyl Phosphate	(C ₈ H ₁₇) ₃ PO ₄	100%	n	-	+	+	+	0	+	+	+	+	2
Trisodium Phosphate	Na ₃ PO ₄	S	+	+	+	+	+	+	+	+	+	+	1
Urea	CO(NH ₂) ₂	S	+	+/0	+	+	+	+	+	20%	+	+	1
Vinyl Acetate	CH ₂ =CHOOCCH ₃	100%	-	-	+	+	+	n	n	+/0	+	+	2
Water Glass => Sodium Silicate													
Xylene	C ₆ H ₄ (CH ₃) ₂	100%	-	-	-	+	+	0	-	-	0	+	2
Zinc Acetate	(CH ₃ COO) ₂ Zn	S	+	+	+	+	+	-	+	+	+	+	1
Zinc Chloride	ZnCl ₂	S	+	+	+	+	-	+	+	+	+	n	1
Zinc Sulphate	ZnSO ₄	s	+	+	+	+	+	+	+	+	+	+/0	1

1.1.2016

Overview of the Resistance of Soft PVC Hoses (Guttasyn®) to the Most Common Chemicals

This data applies to standard conditions (20 °C, 1013 mbar).

+	=	resistant
0	=	conditionally resistant
-	=	not resistant

The data has been taken from relevant manufacturers' literature and supplemented by our own tests and experience. As the resistance of a material also depends on other factors, especially pressure and operating conditions etc, this list should merely be regarded as an initial guide and does not claim to offer any guarantees. Take into consideration the fact that conventional dosing agents are largely compounds, the corrosiveness of which cannot simply be calculated by adding together the corrosiveness of each individual component. In cases such as these the material compatibility data produced by the chemical manufacturer must be read as a matter of priority when selecting a material. Safety data sheets do not provide this information and cannot therefore replace application-specific documentation.

Corrosive agent	Concentration in %	Evaluation
Acetic acid	50	0
Acetic acid (wine vinegar)		0
Acetic acid anhydride	100	-
Acetic acid, aqueous	10	+
Acetic ester	100	-
Acetone	all	-
Acetylene tetrabromide	100	-
Aluminium salts, aqueous	all	+
Alums of all kinds, aqueous	all	+
Ammonium salts	all	+
Ammonium, aqueous	15	-
Ammonium, aqueous	saturated	-
Aniline	100	-
Benzene	100	-
Bisulphite, aqueous	40	+
Borax solution	all	+
Boric acid, aqueous	10	+
Bromine, vaporous and liquid		-
Butanol	100	+
Butyl acetate	100	-
Butyric acid, aqueous	20	+
Butyric acid, aqueous	conc.	-
Calcium chloride, aqueous	all	+
Carbon disulphide	100	-
Carbonic acid	all	+
Caustic potash	15	+
Chlorinated hydrocarbons	all	-
Chrome-alum, aqueous	all	+
Chromic acid, aqueous	50	-
Copper sulphate, aqueous	all	+
Creosote		-
Dextrin, aqueous	saturated	+
Diesel oils, compressed oils	100	0
Diethyl ether	100	-
Difluorodichloromethane	100	-
Ethanol	96	-
Ethyl acetate	100	-
Ethylene glycol	30	+
Ferric chloride, aqueous	all	+
Fertilizing manure salt, aqueous	all	+
Formaldehyde, aqueous	30	0
Glacial acetic acid	100	-
Glucose, aqueous	saturated	+
Glycerol	100	-
Halogens	all	-

10 1.1.2016

Corrosive agent	Concentration in %	Evaluation
Hydrochloric acid	15	+
Hydrogen bromide	10	+
Hydrogen peroxide	to 10	+
Hydrogen sulphide, gaseous	100	-
Ink		+
Magnesium salts, aqueous	all	+
Methyl alcohol	100	+
Methylene chloride	100	-
Nitric acid, aqueous	25	+
Oils => fats, diesel oil, Lubricating oil and similar		
Perchloric acid	all	0
Phenol, aqueous	all	0
Phosphoric acid, aqueous	100	-
Potassium bichromate, aqueous	saturated	+
Potassium persulphate, aqueous	saturated	+
Silver nitrate	10	+
Sodium chloride, aqueous	all	+
Sodium hydroxide	aqueous	+
Sodium hypochlorite	15	+
Sodium salts => sodium chloride		
Sulphur dioxide, gaseous	all	+
Sulphuric acid	30	+
Tetrachloromethane	100	-
Toluene	100	-
Trichloroethylene	100	-
Urea, aqueous	all	+
Xylene	100	-
Zinc salts	all	+

1.1.2016

Product catalogue 2016

Order your personal copy. How you want it, when you want it.

Groundbreaking diversity: ProMinent 2016.

Our product catalogue is available in four individual volumes. We are offering you the following options so that you can request your catalogue of choice.

Metering pumps, components and metering systems

Motor-driven and process metering pumps for all capacity ranges

Measuring, control and sensor technology

Water treatment and water disinfection

You can find the ProMinent app for iPads in the iTunes App Store. www.prominent.com/app

You can find our individual catalogue volumes for download or online browsing at www.prominent.com/en/product-catalogue

Or request your own printed copy directly from us at www.prominent.com/en/catalogue-request

Do you need an overview of our entire product range? Then we would recommend our product overview. www.prominent.com/en/productoverview